

シーンを選ばず、高確度な電力解析を。

Upgrade 新電流センサー

より正確な電力測定に向けて

周波数帯域・確度が向上

電流センサーとの高い親和性

電流のセンシングは、電力測定の確度と作業効率に大きく影響します。

HIOKI は電流センサーを自社で設計開発し、パワーアナライザーとの親和性を高め、 高度な電力測定を実現します。

1 自動位相補正機能により、 すぐに測定を開始できる

電流センサーへの電源供給とセンサー識別機能を標準装備

電流センサーへの電源供給と、 スケーリングを自動で設定します。 接続するだけで、すぐに測定を開始できます。

2 高周波・低力率な 電力を正確に測定

電流センサーの自動位相補正機能

高周波かつ低力率な電力を正確に測定するために、位相誤差の補正が重要です。 PW3390 は、電流センサーの位相特性を 自動で取得し、0.001°分解能で補正します。 電流センサーの性能を 手間をかけずに引き出せます。

3 測定条件の記録

電流センサーの情報を自動で取得

電流センサーを接続するだけで、電流センサーの形名や シリアル No. を自動で取得します。 測定データとともに測定条件の詳細を記録できます。

自動で位相補正値を取得 本体から電源供給 電流センサーの内部メモリ情報 位相補正データ 定格電流 センサー形名 製浩番号 AC/DC カレントセンサ CT6904A の位相特性の補正例 ⊡ -2 位相誤差 自動補正前 -6 自動補正後 -8 10 100 1k 10k 100k 1M 周波数 [Hz] 低力率では位相誤差が電力誤差に大きく影響する 力率 ≒ 1 力率≒0 $Q \uparrow$ Q 位相誤差 **→** P 電力誤差 位相補正について技術資料をご覧いただけます

4 豊富なラインナップ

EV インバーター装置の研究開発 リアクトル・トランスの損失評価

確度、安定性を極めた貫通型センサーです。最大 10 MHz の 広帯域測定や最大 2000 A の大電流測定など、最先端の研究 開発で使用します。

WLTP に対応した燃費(電費)性能試験

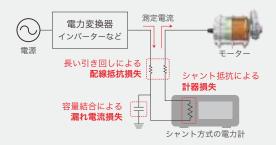
素早く簡単に結線できるクランプ型センサーです。断線が難しい実機試験で使用します。 -40° C \sim 85° C で使用可能で、エンジンルームにおける熱環境でも使用できます。

リアクトル・トランスの損失評価 省エネルギー家電のインバーター評価

独自開発の DCCT 方式により、50 A 直結タイプで世界最高 クラスの確度と帯域を実現します。

実稼働環境に近い状態で 測定できていますか?

電流の検出には大きく分けて **「電流センサー方式」**と 「直接結線方式」があります。


電流センサーで測定すると、 実稼働環境に近い配線状態で 正確に機器を評価できます。

電流センサー方式の測定イメージ

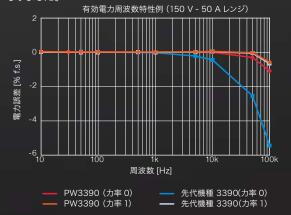
測定対象の配線に電流センサーを接続します。配線 や計器損失の影響を軽減し、高効率システムを実稼 働環境に近い配線状態で測定できます。

直接結線方式の測定イメージ

測定対象の配線を引き回して、電流入力端子に接続 します。配線抵抗や容量結合の影響が増加し、シャント抵抗による計器損失も誤差の要因となります。

高確度と機動性の両立。電力解析の新しい価値

2009 年、コンパクトな筐体に最新の計測技術を搭載し、初代パワーアナライザ 3390 は誕生しました。 どこへでも持ち運べて、電流センサーを使ってすぐに高確度な測定ができる、 そんな特徴が 3390 ならではの価値です。


私たちはこの価値を大切にし、計測技術を更に磨きあげました。 インバータ出力を正確に測定する「確度と帯域」。 高周波かつ低力率な電力を正確に測定するための「位相補正機能」。 そして、測定シーンを拡大する豊富な「電流センサーラインナップ」。

すべては、どんな場面でも正確な電力解析をするために。


測定確度と高周波特性を 徹底追求

4チャネルの電力入力を備え、リーディング誤差±0.04%、フルスケール誤差±0.05%、クラストップレベルの電力基本確度を実現しました。パワーエレクトロニクスにおける高効率機器の電力・効率を、より正確に測定します。さらに、200kHzの測定帯域と、高周波までフラットな振幅・位相特性を実現することにより、高周波かつ低力率な電力も正確に測定することが可能となりました。

電力解析エンジンが実現する 高速・5 系統同時演算

500kS/s 高速サンプリング、16bit 高分解能の A/D 変換器で入力波形を正確に捕捉。電力解析エンジンが周期検出 / 広帯域電力解析 / 高調波解析 / 波形解析 / ノイズ解析の 5 系統全てを独立でデジタル処理します。高速同時演算処理により、正確な測定と 50ms のデータ更新レートを両立しています。

* AAF(アンチエイリアシングフィルタ): サンプリング時に発生する折り返し誤差を防止するフィルタ

高確度を徹底追求した電流センサーで、高周波かつ低力率電力を正確に

高確度 貫通タイプ

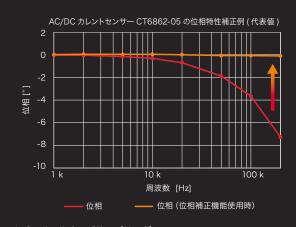
確度と帯域と安定性を 極めた貫通タイプ。広い使用温度範囲で最大 1000Aの大電流を高確 度に測定します。

高確度 クランプタイプ

素早く簡単に結線できる クランプタイプ。狭小ス ペース向けの小型センサ から、大電流用センサま で豊富にラインアップ。

高確度 直接結線タイプ

新開発のDCCT 方式により、50A 定格で世界最高クラスの測定帯域と測定確度を実現します。

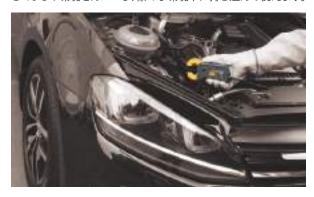


● 豊富な電流センサーラインナップ を動画でご覧いただけます。

電流センサーの位相補正機能を搭載

新技術のバーチャルオーバサンプリングを搭載。500kS/s、16bit の高分解能を維持したまま、200MS/s 相当の位相補正を実現。電流センサーの位相誤差を0.01°分解能で設定し、補正します。従来は正確な測定が難しかったインバータ出力のスイッチング周波数に含まれる高周波かつ低力率な電力も、位相補正機能を使うことで、測定誤差を大幅に低減し測定します。

* バーチャルオーバサンプリング: 実際のサンプリング周波数より数百倍高いサンプリング周波数を用い たデスキュー処理を機器内部で仮想的におこなう技術

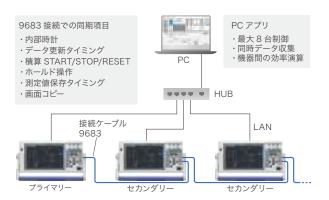


電流センサーの位相補正について 技術資料をご覧いただけます。

研究室でも、フィールドでも活躍

タフな温度環境下で、高確度に測定

恒温室や温度変化の激しいエンジンルームなど、過酷な温度環境下でも高確度に測定します。優れた温度特性と広い使用温度範囲をもつ、高確度貫通タイプと高確度クランプタイプの電流センサーをラインナップ。PW3390本体は-10°Cの低温環境から40°Cの環境をカバーし、様々な環境下に持ち運んで使えます。


50Hz/60Hz ラインは、最大 6000A 測定

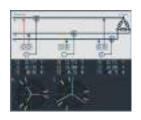
AC フレキシブルカレントセンサ CT7040 シリーズは、太陽光パワーコンディショナ出力をはじめとした商用電源ラインを最大6000Aまで測定できます。込み入った配線や狭い場所、太いケーブルでも簡単に結線できます。

最大8台(32 チャネル) 同期したデータを取得

接続ケーブル 9683 で複数台の PW3390 を接続すれば、制御信号と内部時計が同期します。プライマリー側の操作で、セカンダリーに設定された PW3390 の測定タイミングを制御できます。インターバル測定では CF カードや PC に同期した測定データを収集でき、より多系統の同時測定が可能です。

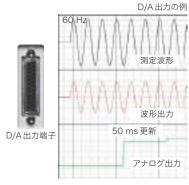
フィールドにも高確度測定を持ち運ぶ

電力解析エンジンに演算機能を凝縮することで、大幅な小型軽量化を実現。フィールドでも研究室並みの高確度測定を実現します。


外部電源不要のセンサー接続

本体から電流センサーに電源供給できるため、外部に電流センサー用の電源を別途用意する必要がありません。また、接続したセンサーを自動認識し、確実かつ迅速な測定をサポートします。

結線表示と簡易設定ですぐに測定開始


結線図とベクトルを画面で確認し ながら結線できます。結線を選ん で簡易設定機能を実行するだけ で、自動的に最適設定をおこない ます。

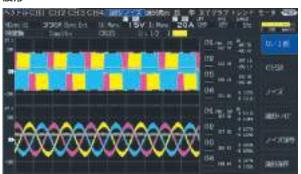
豊富なインターフェイスで外部機器連携

LAN、USB (通信、メモリ)、CF カード、RS-232C、同期制御、外部制御など、多数のインターフェイスを搭載。 D/A 出力*を使用すれば最大 16 項目を 50ms でアナログ出力します。各チャネルの電圧・電流波形**も出力可能です。

- * PW3390-02、PW3390-03に搭載
- **波形出力時は500kS/sで出力、正弦波で20kHzまでを忠実に再現できます

ワンタッチで画面切替、多彩な電力解析

電力解析エンジンにより全ての項目を同時並列演算。ページキーで画面を切り替えるだけで多彩な解析が可能です。



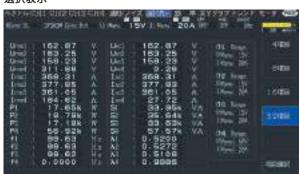
ベクトル


各高調波次数の電圧 / 電流 / 電力 / 位相角をベクトルグラフと数値で確認できます

波形

4 チャネルの電圧 / 電流波形を、最速 500kS/s、または最長 5 秒間まで表示します。 波形データの保存も可能です

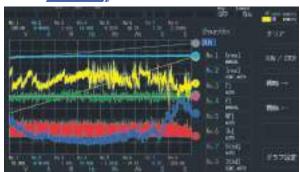
高調波グラフ


電圧/電流/電力の最大100次までの高調波をバーグラフで表示します。選択した次数の数値データも同時に確認できます

効率・損失


有効電力値、モータパワー値を用いてインパータ / モータ個々の効率 η [%] / 損失 Loss[W] や総合効率を 1 台で同時に確認できます

選択表示

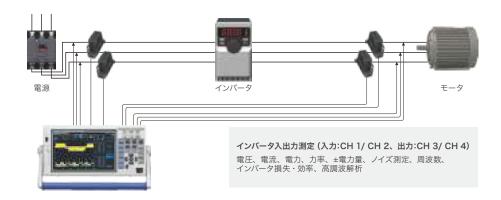

項目数 4/8/16/32 の各画面ごと個別に表示項目を選択して、まとめて1画面で確認できます

ノイズ

電圧と電流の FFT 結果を最高 200kHz までグラフと数値で表示します。インバータ ノイズの周波数解析に最適です

トレンド / Ver 2.00 //

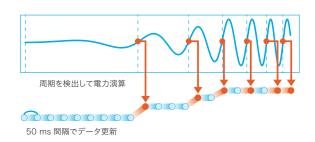
最大8つの任意の項目を選択し、変動グラフを表示します。グラフは画面コピーと して保存できます。


X-Y グラフ

インバータの特性評価やモータのトルクマップの作成に。任意の項目を選択し、X-Y プロットグラフを表示します

アプリケーション

インバータの電力変換効率評価

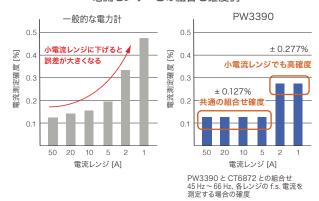


おすすめのポイント

- 電圧・電流各4チャネルの絶縁入力により、インバータの1次側・2次側電力を同時測定
- 2. RMS値、MEAN値、基本波成分など インバータ2次側解析に重要なパラメー タを全て同時測定
- 3. 電流センサーだから結線が簡単ベクトル図表示で結線確認も確実
- 4. 電流センサーだから、電力測定時のインバータによる同相ノイズの影響を軽減
- 5. インバータ制御の評価で要求される高調 波解析に加え、ノイズ成分も同時測定

過渡状態の電力を 50ms 高確度高速演算

発進、加速のモータ挙動をはじめ、過渡状態の電力を 50 ms 更新で測定。最低 0.5 Hz から、変動する周波数に自動追従し て電力を測定します。



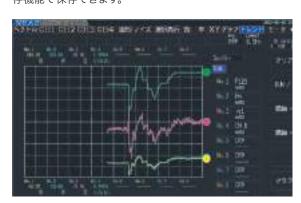
低周波から高周波まで、周波数が変動しても基本波を自動検出

小電流レンジから高確度な測定を実現

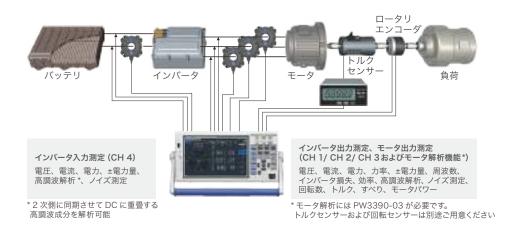
PW3390 と高確度電流センサー*1 との組合せで、優れた確度を規定します (DC, 50 Hz/60 Hz において)。大電流から微小電流まで、PW3390 のレンジを気にせずに高確度な測定が可能です。

電流センサーとの組合せ確度例

※1. 貫通タイプ: CT6872, CT6873, CT6875A, CT6876A, CT6877A クランプタイプ: CT6841A, CT6843A, CT6844A, CT6845A, CT6846A 直接結線タイプ: PW9100A


インバータの高周波ノイズを評価 Ver 2.00 //

Ver2.00より強化したノイズ解析機能は、DC ~ 200kHz のノイズ成分を周波数解析し、上位 10 ポイントの表示・自動保存や、FFT スペクトラムの手動保存ができます。 インバータやスイッチング電源により発生するとされる 2kHz ~ 150kHz の伝導ノイズの評価に有効です。



効率の時間変動を視覚的に把握 Ver 2.00 //

トレンド表示は、効率や周波数など任意の測定項目を、数十秒から半月間までグラフ表示します。測定値が急激に変動する過渡状態も、微小な変動をする定常状態も、変動の様子を視覚的に把握できます。グラフは画面ハードコピーで、数値は自動保存機能で保存できます。

EV/HEV インバータモータ解析 / 評価

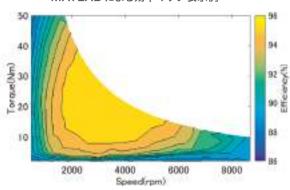
おすすめのポイント

- 1. 貫通型電流センサー使用により簡単に 結線、かつ高確度に測定
- 2. RMS 値、MEAN 値、基本波成分など インバータ2次側解析に重要なパラメー タを全て同時測定
- 3. 外部クロックなしで 0.5 Hz ~ 5 kHz の高調波解析に対応
- 4. モータ解析機能搭載でインバータモー タの総合評価を実現
- 5. モータ解析に必要な電圧,トルク,回転数,周波数,すべり,モータパワーを 1台で測定
- 6. インクリメンタル形エンコーダ対応で電 気角をより正確に測定

モータの電気角測定 (PW3390-03 に搭載) Ver 2.00 //

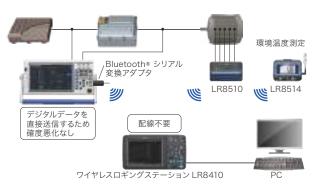
高効率同期モータの dq 座標系によるベクトル制御に必要な、電気角測定機能を搭載。エンコーダパルスを基準にした、電圧・電流基本波成分の位相角をリアルタイムに測定します。さらに誘起電圧発生時に位相角をゼロ補正することで、誘起電圧位相を基準とした電気角測定が可能です。Ver2.00 より位相ゼロアジャスト値の表示と手動設定を搭載し、任意のゼロアジャスト値で電気角測定が可能になりました。電気角は同期モータの Ld、Lg の算出パラメータとしても利用できます。

ベクトル画面でモータ電気角を表示

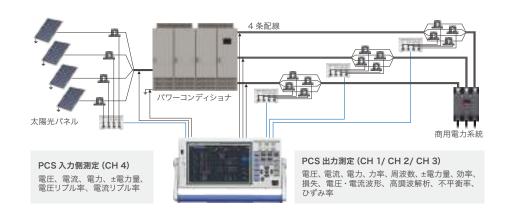

CH A: 143.92 No. CH B: 1.8961k Pm : 28.58k N Slip: 4.75

モータ解析画面(トルク、回転数、モータパワー、すべり) CHBにエンコーダの Z 相パルスを入力すると電気角、B 相パルスを入力すると回 転方向を測定できます

インバータモータの効率・損失評価


インバータ入出力の電力とモータ出力を同時に測定することで、インバータ/モータ/システム全体の効率と損失の評価が可能です。PW3390で記録された各動作点の測定結果から、MATLAB上で効率マップや損失マップを得ることが出来ます。*MATLABは、Mathworks,Inc.の登録商標です。

MATLAB による効率マップ表示例


Bluetooth®無線技術でデータロガーに転送

PW3390 とデータロガー (LR8410 Link 対応品) を Bluetooth*無線技術で接続*すると、PW3390 の測定値8項目をデータロガーに無線送信できます。 多チャネルデータロガーで測定する電圧・温度・湿度などの項目に加え、PW3390 の測定値を統合してリアルタイムに観測・記録可能です。

接続には弊社推奨のシリアル -Bluetooth 無線技術変換アダプタおよび電源アダプタが必要です。詳しくはお問い合わせください。

PV 用パワーコンディショナ (PCS) の効率測定

おすすめのポイント

- 1. 4 チャネル標準搭載。パワーコンディショナの入出力特性を同時測定
- 2. 電流センサーだから大電流でも高確度 に測定。ベクトル図表示で結線確認も 確実
- 3. 系統連系におけるパワーコンディショナ 出力の売電電力量 / 買電電力量も 1 台
- 4. 太陽光などの入力変化に素早く反応する DC モード積算機能を搭載
- 5. 太陽光発電用パワーコンディショナ評価で必要なリプル率,効率,損失などをすべて1台で測定

1000A 以上の大電流測定に HIOKI の電流計測ソリューション

50Hz/60Hz なら最大で 6000A、直流なら 2000A まで測定可能なセンサーをラインナップ。CT9557 センサユニットを使うと、複数の高確度センサーの出力波形を加算して測定可能。多条配線のラインで最大 8000A まで高確度に測定可能です。

			青字:高確度セン	ノサー 黒字:汎用センサー	
測定対象別 推奨電流センサー		DC 電力	系統電力 50Hz/ 60Hz	インバータ2次側電力	
1条配線	1000 A 以下				
	2000 A 以下	CT6877A、またはCT7742	CT6877A、または CT7642	CT6877A	
多采一括桁線	6000 A 以下	_	CT7044/CT7045/CT7046	_	
2条配線	2000 A 以下	CT9557+CT6876A × 2、または CT9557+CT6846A × 2			
	4000 A 以下	CT9557+CT6877A × 2			
3条配線	3000 A 以下	CT9557+CT6876A \times 3、 \pm tct CT9557+CT6846A \times 3			
	6000 A 以下	CT9557+CT6877A × 3			
4条配線	4000 A 以下	CT9557+CT6876A×4、またはCT9557+CT6846A×4			
	8000 A 以下	CT9557+CT6877A × 4			

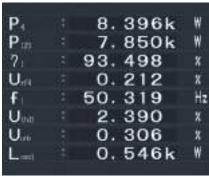
CT6876A (AC/DC 1000 A) 貫通タイプ 広帯域・高確度

CT6877A (AC/DC 2000 A) 貫通タイプ 広帯域・高確度

CT6846A (AC/DC 1000 A) クランプタイプでスムーズに結線

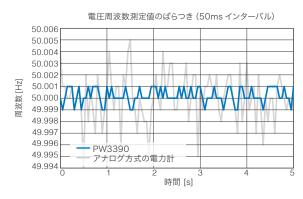
CT9557 複数の電流センサーの波形を加算

CT7742 (AC/DC 2000 A) ゼロずれせずに DC を安定して測定

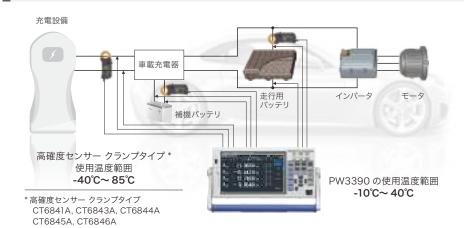

CT7642 (AC/DC 2000 A) CT7742 よりも広い周波数特性

CT7044/ CT7045/ CT7046 (AC 6000 A) フレキシブルで狭い隙間も簡単に結線

PCS 固有の項目に対応


効率、損失、DC リプル率、三相不平衡率など、PCS に必要なパラメータを同時に表示します。必要な測定項目が一目でわかり、試験効率が向上します。入力と出力の測定同期ソースを一致させることで、出力側 AC に同期した DC 電力測定や、安定した効率測定ができます。

DC 電力 (パネル出力) 三相電力 (PCS 出力) 変換効率 リプル率 周波数 電圧総合高調波歪み 不平衡率 損失

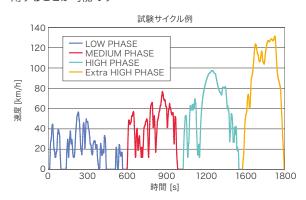

電圧周波数測定基本確度± 0.01Hz*

PCS の各種試験に必要な周波数測定を業界トップクラスの確度、安定度で実現しました。各種パラメータと同時に、周波数を最大4チャネル同時に高確度測定できます。

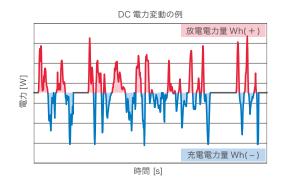
* さらに周波数を高確度で規定されたい場合はご相談ください。

車両の燃費性能評価試験

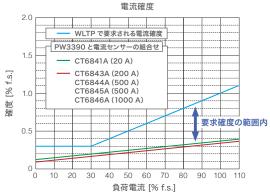
おすすめのポイント


- 1. 優れた基本確度と DC 確度で充電 / 放電電力を正確に測定
- 2. 4 チャネル標準搭載。補機バッテリも含む複数の充放電計測に対応
- 3. 広い使用温度範囲のクランプセンサー で高確度測定を簡単に実現可能
- 4. 国際基準 WLTP に追加された -7°C低 温試験で、車両と同じ部屋に置いて試 験可能。

車両の燃費性能評価試験 イメージを動画でご覧い ただけます。

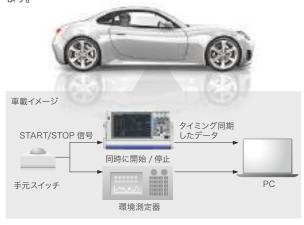

新燃費基準 WLTC モードの性能評価試験

国際基準 WLTP に対応した燃費計測では、バッテリにおける充放電の電流積算と電力積算の正確な測定が求められます。電流センサーと PW3390 の優れた DC 確度、50ms インターバル積算は、車両の燃費性能評価に大変有効です。PW3390 の使用温度範囲が -10° C~ 40° Cになり、低温環境下 $(-7^{\circ}$ C)でも使用することが可能です


極性別電流 • 電力積算機能

DC の積算測定は、500kS/s のサンプリング毎に充電電力と放電電力を極性別に積算し、積算期間中の正方向電力量、負方向電力量、正負方向電力量和をそれぞれ測定します。バッテリへの充放電が急激に繰り返される場合においても、正確な充電量と放電量の測定ができます。

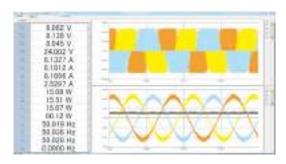
車両測定に最適な高確度電流センサー


クランプタイプの電流センサーは、 下図に示す通り WLTP で要求されている電流確度を満足しています。 測定回路のケーブルを切ることなく簡単に結線ができ、車種や測定箇所に合わせて幅広い種類の定格 (20 A ~ 1000 A) から選ぶことができます。

f.s.= 電流センサーの定格電流 (定格電流が 500 A の電流センサーを使用した場合の 100% f.s. は 500 A)

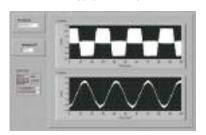
外部制御で周辺機器と連携

外部制御端子を使用して積算の START/STOP、画面コピーなどの制御が可能。実車における性能評価において、手元スイッチからの制御や他の機器とのタイミング連携が容易におこなえます。


ソフトウェア

ソフトウェア、ドライバ、通信コマンド取扱説明書は HIOKI ホームページよりダウンロードいただけます。 https://www.hioki.co.jp

PC 通信ソフトウェア PW Communicator


PW Communicator は PC と PW3390 を通信インターフェース(LAN/RS-232C/USB) で接続し、PC 上で PW3390 の設定、測定値や波形データのモニタと保存が容易に行える無償アプリケーションソフトウェアです。

PW3390 をはじめ当社パワーアナライザ PW6001、パワーメータ PW3335、PW3336、PW3337 を最大 8 台まで同時に接続し、異なる機種を一括制御することができます。測定データの PC への同時保存、測定器間の効率演算も可能です。

LabVIEW ドライバ

LabVIEW ドライバの使用による計測システムの構築可能。ウィンドウ上にアイコンを配置して線で結ぶだけの簡単プログラミングです。設定やデータ取得を行うサンプルプログラムを複数用意していますので、すぐに利用できます。

*LabVIEW は NATIONAL INSTRUMENTS 社の登録商標です。

ジェネクトワン SF4000

SF4000 は PC と PW3390 を Ethernet で接続し、測定データを PC にリアルタイムで一括表示・保存ができる無償アプリケーションソフトウェアです。

PW3390 をはじめ当社メモリハイロガー LR8450、ワイヤレスロギングステーション LR8410 などの計測器を最大 30 台まで同時に接続し、複数測定器のデータを一括でリアルタイムにモニター・グラフ・リスト表示が可能。電力と温度など統合的な評価・解析に大変有効です。

インターネットブラウザで遠隔操作

HTTP サーバ機能の搭載により、LAN インターフェイスを介して PC と接続。インターネットブラウザに表示された画面の操作パネルで、離れた場所から設定やデータ確認ができます。

パワーアナライザーラインナップ

	形名	PW6001	PW8001+U7005	PW8001+U7001	PW3390
		高効率 IGBT インバーターの	SiC,GaN インバーター、 リアクトル・	高効率 IGBT インバーター、 PV インバーター	
	71325	測定に 	トランス損失の測定に	の測定に	同能反じ成却任と同立
	外観				
	測定周波数帯域	DC, 0.1 Hz ~ 2 MHz	DC, 0.1 Hz ~ 5 MHz	DC, 0.1 Hz ~ 1 MHz	DC, 0.5 Hz ~ 200 kHz
	50 Hz/60 Hz 電力基本確度	± (0.02% of reading + 0.03% of range)	± (0.01% of reading + 0.02% of range)	± (0.02% of reading + 0.05% of range)	± (0.04% of reading + 0.05% of range)
	DC 電力確度	± (0.02% of reading + 0.05% of range)	± (0.02% of reading + 0.03% of range)	± (0.02% of reading + 0.05% of range)	± (0.05% of reading + 0.07% of range)
	10 kHz 電力確度	± (0.15% of reading + 0.1% of range)	± (0.05% of reading + 0.05% of range)	± (0.2% of reading + 0.05% of range)	± (0.2% of reading + 0.1% of range)
	50 kHz 電力確度	± (0.15% of reading + 0.1% of range)	± (0.15% of reading + 0.05% of range)	± (0.4% of reading + 0.1% of range)	± (0.4% of reading + 0.3% of range)
	電力測定チャネル数	1 ch/2 ch/3 ch/4 ch/5 ch/6 ch 発注時に指定		/ /5 ch/6 ch/7 ch/8 ch U7005 を指定(混在可)	4 ch
	電圧 , 電流 ADC サンプリング性能	18-bit, 5 MHz	18-bit, 15 MHz	16-bit, 2.5 MHz	16-bit, 500 kHz
測定	電圧レンジ	6 V/15 V/30 V/60 V/150 V/ 300 V/600 V/1500 V	6 V/15 V/30 V/60 V/150) V/ 300 V/600 V/1500 V	15 V/30 V/60 V/150 V/ 300 V/600 V/1500V
	電流レンジ	probe1: 100 mA ~ 2000 A (6 レンジ, センサーによる) probe2: 100 mV/200 mV/ 500 mV/1 V/2 V/5 V	100 mA ~ 2000 A (6 レンジ , センサーによる)	probe1: 100 mA ~ 2000 A (6 レンジ, センサーによる) probe2: 100mV/200mV/ 500mV/1 V/2 V/5 V	100 mA ~ 8000 A (6 レンジ, センサーによる)
	 同相電圧除去比 	50 Hz/60 Hz: 100 dB 以上 100 kHz: 80 dB 以上	50 Hz/60 Hz: 120 dB 以上 100 kHz: 110 dB 以上	50 Hz/60 Hz: 100 dB 以上 100 kHz: 80 dB typical	50 Hz/60 Hz: 80 dB 以上
	温度係数	0.01%/° C	0.01	%/° C	0.01%/° C
	電圧入力方式	光絶縁入力,抵抗分圧方式	光絶縁入力,抵抗分圧方式	絶縁入力,抵抗分圧方式	絶縁入力,抵抗分圧方式
	電流入力方式	電流センサーによる絶縁入力		こよる絶縁入力	電流センサーによる絶縁入力
	外部電流センサー入力	○ (ME15W, BNC)	○ (ME15W)	O (ME15W, BNC)	○ (ME15W)
	外部電流センサー用電源 	0 10 ms/50 ms/200 ms	1 ms/10 ms/	0 ms/200 ms	50 ms
電 配 圧	最大入力電圧	1000 V, ± 2000 V peak (10 ms)	1000 V, ± 2000 V peak	AC 1000 V, DC1500 V, ± 2000 V peak	1500 V, ± 2000 V peak
入力	対地間最大定格電圧	600 V CAT III 1000 V CAT II	600 V CAT III 1000 V CAT II	AC 600 V/DC 1000 V CAT III AC 1000 V/DC 1500 V CAT II	600 V CAT III 1000 V CAT II
解	 モーター解析チャネル数	● 最大 2 モーター	● 最大 4	- モーター	● 1 モーター
解析	モーター解析入力形式	アナログ DC/ 周波数 / パルス	アナログ DC/	周波数 / パルス	アナログ DC/ 周波数 / パルス
	電流センサー位相補正演算	0	○ (<i>F</i>	Auto)	0
	高調波測定	○ (6 系統独立)	○ (8 系	統独立)	0
	高調波最大解析次数	100次	500	0次	100次
	高調波同期周波数範囲	0.1 Hz ~ 300 kHz	0.1 Hz ~ 1.5 MHz	0.1 Hz ~ 1 MHz	0.5 Hz ~ 5 kHz
	IEC 高調波測定	0)*	-
機	IEC フリッカ測定	-) *	-
能	FFT スペクトラム解析	○ (DC ~ 2 MHz)	○*(DC ~ 4 MHz)	○*(DC ~ 1 MHz)	○ (DC ~ 200 kHz)
	FFT 解析項目	U・I・トルク(アナログ)・ 回転数(アナログ)		コグ)・回転数(アナログ)	U・I・トルク(アナログ)・ 回転数(アナログ)
	ユーザー定義演算	0		<u> </u>	-
	デルタ変換 	Ο (Δ -Y, Y- Δ)		Υ, Υ- Δ)	Ο (Δ -Y)
	D/A 出力	● 20 チャネル (波形出力 , アナログ出力)		チャネル アナログ出力)	● 16 チャネル (波形出力, アナログ出力)
表	ディスプレイ	9 インチ TFT カラー LCD		FT カラー LCD	9 インチ TFT カラー LCD
示	タッチパネル	0	(-
	外部記憶媒体	USB メモリ (2.0)	USB 🗡 🗆	Eリ (3.0)	USB メモリ (2.0), CF カード
イソ	LAN (100BASE-TX, 1000BASE-T)	0	()	○ (10BASE-T, 100BASE-TXのみ)
タ	GP-IB	0	(-
l フ	RS-232C	○ (最大 230, 400 bps)	○ (最大 11	5, 200 bps)	○ (最大 38, 400 bps)
I	外部制御	0	(0
1	複数台同期	-	○ (最为	大4台)*	○ (最大8台)
ス	光リンク	0		*	-
	CAN · CAN FD	-			-
_ _	法・質量 (W×H×D)	約 430 mm × 177 mm × 450 mm, 約 14 kg		1 mm × 361 mm, 4 kg	約 340 mm × 170 mm × 156 mm, 約 4.6 kg

仕様

基本仕様

確度保証期間 6 か月 (1 年確度は 6 か月確度× 1.25)

-1. 電力測定入力仕	様	確度保証	正期間 6 か月 (1	年確度は6か	月確度×1.25)
測定ライン	単相2線(1P2V 三相4線(3P4V		1P3W)、三相3	線 (3P3W2M	,3P3W3M)、
		CH1	CH2	CH3	CH4
	パターン1	1P2W	1P2W	1P2W	1P2W
	パターン2	1P	3W	1P2W	1P2W
	パターン3	3P3	W2M	1P2W	1P2W
	パターン4	1P			3W
	パターン5		W2M		3W
	パターン6	3P3\	W2M	3P3	W2M
	パターン7		3P3W3M		1P2W
	パターン8		3P4W		1P2W
入力チャネル数	電圧 : 4 チャネル U1 ~ U4 電流 : 4 チャネル I1 ~ I4				
入力端子形状	電圧: プラグイン端子(安全端子) 電流: 専用コネクタ(ME15W)				
入力方式	電圧: 絶縁入力、抵抗分圧方式 電流: 電流センサー (電圧出力) による絶縁入力				
電圧レンジ	15 V/ 30 V/ 6 (結線ごとに選	i0 V/ 150 V/ 3 択可能、AUT0		1500 V	
電流レンジ	2A/4A/8				-05 20 A 時)
() 内は使用センサー	0.04 A / 0.08 0.4 A / 0.8 A 4A / 8 A / 40 A / 80 A / 0.1 A / 0.2 A 10 A / 20 A / 20 A / 40 A / 400 A / 800 400 A / 800 400 A / 800 40 A / 80 A 40 A / 80 A 40 A / 80 A (54 A / 0.8 A	/2 A / 4 A / 20 A / 40 A 20 A / 40 A 20 A / 10 A A / 10 A / 20 50 A / 100 A 1100 A / 20 A / 2 kA A / 2 kA / 4 I 200 A / 40 A ./ 2 A / 4 4 A	8 A / 20 A / 80 A / 200 0 A / 800 A / 2 / 2 A / 5 A 0 A / 50 A A / 200 A / 50 A / 400 A / 7 (A / 8 kA (A / 8 kA / 20 A / 800 A / 2 (A / 8 A / 20 A / 8 A / 20	(20 A+ A (2000 A (2000 C (5 A+2 (50 A+ (50 A+ (1000 C (CT764 (1000 C (1000 C (1000 C) (1000 C)	zンサー) (センサー) Aセンサー) ンサー) zンサー) (センサー) Aセンサー) 42、CT7742 (CT7045、CT7046 V/ Aセンサー)
電力レンジ	電圧レンジ/電流 0.6000 W~9	流レンジ/測定		により自動的に	決定
クレストファクタ	300 (電圧・電 3 (電圧・電流し	流最小有効入力 レンジ定格に対	りに対して) た して) ただし1!	だし1500 V レ 500 V レンジに	ンジは 133 は 1.33
入力抵抗 (50/60Hz)	電圧入力部 : 2 M Ω ± 40 k Ω(差動入力および絶縁入力) 電流センサー入力部 : 1 M Ω ± 50 k Ω				
最大入力電圧	電圧入力部 電流センサー入	電流センサー入力部 : 5 V、±10 Vpeak			
対地間最大定格電圧	電圧入力端子 1000 V(50 Hz/60 Hz) 測定カテゴリII 600 V(予想される過渡過電圧6000 V) 測定カテゴリII 1000 V(予想される過渡過電圧6000 V)				
測定方式	電圧電流同時テ	゠゙゙ジタルサンプ!	リング・ゼロクロ	ス同期演算方式	式
サンプリング	500 kHz/ 16 bit				
周波数帯域	DC、0.5 Hz ~	- 200 kHz			
同期周波数範囲	0.5 Hz ~ 5 kH 下限周波数設定		1Hz / 2Hz / 5	Hz / 10Hz / 2	20Hz)
同期ソース	U1 ~ U4、I1 ~ DC(50 ms, 10 結線ごとに選択 U or I選択時はゼロクロスフィ/ゼロクロスフィ/U or I選択時は	O ms 固定) 可能 (同一チャーデジタルローパ レタ強度 2 段階 レタが OFF の場	ネルの U/I は同- スフィルタによる 切り替え (強 / 弱 合は動作および	-の同期ソース(6ゼロクロスフィ 弱) 確度を規定した	こより測定する (ルタ自動追従 (い
データ更新レート	50 ms				
LPF	OFF / 500 Hz 500 Hz : 60 H 5 kHz : 500 H 100 kHz : 20	lz以下で確度規 lz以下で確度規	見定、ただし、± 見定	0.1%f.s.を加算	
 ゼロクロスフィルタ	OFF / 弱 / 強				
	OFF/弱/強 電圧・電流ゼロクロスタイミング比較方式				
極性判別	デジタルローパ	スフィルタによ	るゼロクロスフー		
基本測定項目	周波数、平面 (1) 原注单純平高度、金值。 在 (1) 值整流波形平面 電流水形 (1) 電流水形 (1) 位相角 (1) 位正方向 (1)	電圧基本波成 至率、電圧リプル 換算値、電流交換 、+、電流波形比 有効でである。 な相角、正方向 負方向電力量、	分、電圧波形ビル率、電圧波形ビル率、電圧不平 流成分、電流成分、電流総 ピーク-、電流総 相電力、無効電 電流量、負方向	一夕+、電圧派 衡率、電流実施 純平均値、電 合高調波歪率、 力、力率、電 可電流量、正負	数形ピーク-、情 数値、電流平均 流基本波成分 電流リプル率 王位相角、電流 方向電流量和
南口/高达数法士-4	(PW3390-03) モータトルク、	回転数、モータ		高法 <i>体</i> + 22.15	l + 7
電圧/電流整流方式	皮相·無効電力 RMS / MEAN	(各結線の電圧	E・電流ごとに選		
表示分解能	999999カウント 999999カウン				

Tota extra	Te		
確度		電圧 (U)	電流 (I)
	DC	_	±0.05% rdg. ±0.07% f.s.
	0.5 Hz ≦ f<30 Hz	± 0.05% rdg. ± 0.1% f.s.	
	30 Hz ≦ f<45 Hz		± 0.05% rdg. ± 0.1% f.s.
	45 Hz ≦ f ≦ 66 Hz	±0.04% rdg. ±0.05% f.s.	-
	66 Hz < f ≦ 1 kHz	± 0.1% rdg. ± 0.1% f.s.	± 0.1% rdg. ± 0.1% f.s.
	1 kHz < f ≦ 10 kHz	± 0.2% rdg. ± 0.1% f.s.	± 0.2% rdg. ± 0.1% f.s.
	10 kHz < f ≦ 50 kHz	± 0.3% rdg. ± 0.2% f.s.	± 0.3% rdg. ± 0.2% f.s.
	50 kHz < f ≦ 100 kHz	± 1.0% rdg. ± 0.3% f.s.	± 1.0% rdg. ± 0.3% f.s.
	100 kHz < f ≤ 200 kHz	± 20% f.s.	± 20% f.s.
		有効電力 (P)	位相差
	DC	±0.05% rdg. ±0.07% f.s.	-
	0.5 Hz ≤ f < 30 Hz	± 0.05% rdg. ± 0.1% f.s.	± 0.08°
	30 Hz ≦ f < 45 Hz	± 0.05% rdg. ± 0.1% f.s.	± 0.08°
	45 Hz ≤ f ≤ 66 Hz	±0.04% rdg. ±0.05% f.s.	± 0.08°
	66 Hz < f ≦ 1 kHz	± 0.1% rdg. ± 0.1% f.s.	± 0.08°
	1 kHz < f ≦ 10 kHz	± 0.2% rdg. ± 0.1% f.s.	± (0.06 × f+0.02) °
	10 kHz < f ≤ 50 kHz	± 0.4% rdg. ± 0.3% f.s.	± 0.62°
	50 kHz < f ≦ 100 kHz	± 1.5% rdg. ± 0.5% f.s.	± (0.005 × f+0.4) °
	100 kHz < f ≤ 200 kHz	-	± (0.022 × f-1.3) °
	上記表中の'f'の単位は		[= (0.022 × 1 1.0)
	500 Hz < f ≤ 5 kHz: 5 kHz < f ≤ 20 kHz:: 20 kHz < f ≤ 200 kH. 電流・有効電力のDC確 電流、有効電力、位相差 ただし、電流測定オプシ の仕様ページP16~P1	位相差は参考値 8合、位相差の確度に以下 ±0.3° ±0.5° z:±1° 腹に±20 µVを加算(たた きについては上記確度に電。 ョンにおいて別途組合せる	ざし2Vf.s.) 流センサーの確度を加算 産度を規定(電流センサー
確度保証条件			
傩及休証 宋十	確度保証温湿度範囲:23°C±3°C、80% rh以下ウオームアップ時間:30分以上入力:正弦波入力、力率1、またはDC入力、対地間電圧 OV、ゼロアジャスト後有効測定範囲内において、且つ基本波が同期ソースの条件を満たす範囲内において		
温度係数	±0.01% rdg./°C (DC時は±0.01% f.s./°C加算)		
同相電圧の影響	±0.01% f.s.以下(電圧入	力端子-ケース間に1000 \	/(50 Hz/60 Hz) 印加時)
外部磁界の影響	±0.01% f.s.以下(電圧入力端子-ケース間に1000 V(50 Hz/60 Hz)印加時) ±1% f.s.以下 (400 A/m、DCおよび50 Hz /60 Hzの磁界中において)		
力率の影響	$\phi=\pm90^{\circ}$ 以外の時: $\pm(1-\cos(\phi+位相差確度)/\cos(\phi))\times100\%$ rdg.		
		5+位相差確度)×100% f	.s.
伝導性無線周波電磁	3 Vにて電流、有効電力		
界の影響	電流のf.s.は電流センサ	ーの定格一次電流値 いぶい電流センサーの空枠	次带法值
放射性無線周波電磁	10 V/mにて電流、有効	ンジ×電流センサーの定格	一次电流恒
界の影響	電流のf.s.は電流センサ		一次電流値
有効測定範囲	電圧、電流、電力:レン		
表示範囲	電圧、電流、電力:レン	ジのゼロサプレス範囲設定	€~ 120%
ゼロサプレス範囲	OFF / 0.1% f.s. / 0.5% f.s. より選択		
	OFF時にはゼロ入力時にも数値を表示することが有り 電圧:±10% f.s. 以下の内部オフセットをゼロ補正 電流:±10% f.s.±4mV 以下の入力オフセットをゼロ補正		
ゼロアジャスト	電流:±10% f.s.±4m\/	- 以下の八月/1 ノビットゲー	
波形ピーク測定範囲	電流:±10% f.s.±4mV 電圧、電流各レンジの± 電圧、電流各表示確度±	300%以内	113
波形ピーク測定範囲波形ピーク測定確度	電圧、電流各レンジの± 電圧、電流各表示確度±	300%以内	110
波形ピーク測定範囲 波形ピーク測定確度 2. 周波数測定仕様	電圧、電流各レンジの± 電圧、電流各表示確度±	300%以内 2% f.s.	
波形ピーク測定範囲 波形ピーク測定確度 2. 周波数測定仕様 測定チャネル数	電圧、電流各レンジの± 電圧、電流各表示確度± 4チャネル(f1、f2、f3、	300%以内 2% f.s. f4)	
波形ピーク測定範囲 波形ピーク測定確度 2. 周波数測定仕様 測定チャネル数 測定ソース	電圧、電流各レンジの± 電圧、電流各表示確度± 4チャネル(f1、f2、f3、 入力チャネルごとに U /	300%以内 2% f.s. f4) l から選択	
波形ピーク測定範囲 波形ピーク測定確度 2. 周波数測定仕様 測定チャネル数 測定ソース 測定ソース	電圧、電流各レンジの± 電圧、電流各表示確度± 4チャネル(f1、f2、f3、 入力チャネルごとに U / レシブロカル方式+ゼロ	300% 以内 2% f.s. f4) l から選択 クロス間サンプリング値補	正
波形ピーク測定範囲 波形ピーク測定確度 2. 周波数測定仕様 測定チャネル数 測定ソスス 測定分式 測定方式 測定範囲	電圧、電流各レンジの± 電圧、電流各表示確度± 4 チャネル(f1、f2、f3、 入力チャネルごとに U / レシプロカル方式+ゼロ 0.5 Hz ~ 5 kHz 同期周別	300% 以内 2% f.s. f4) f から選択 クロス間サンプリング値補 g 数範囲内 (測定不能時は 0	正
波形ピーク測定範囲 波形ピーク測定確度 2. 周波数測定仕様 測定チャネル数 測定リース 測定方式 測定範囲 測定下限周波数設定	電圧、電流各レンジの± 電圧、電流各表示確度± 4チャネル(f1、f2、f3、 入カチャネルでとに U / レシプロカル方式+ゼロ 0.5 Hz ~ 5 kHz 同期周 0.5 Hz / 1 Hz / 2 Hz /	300%以内 2% f.s. f4) I から選択 クロス間サンプリング値補 数範囲内(測定不能時は 0 5 Hz / 10 Hz / 20 Hz	正
波形ピーク測定範囲 波形ピーク測定確度 2. 周波数測定仕様 測定チャネル数 測定ソース 測定方式 測定範囲 測定範囲 測定で駆周波数設定 データ更新レート	電圧、電流各レンジの± 電圧、電流各表示確度± 4チャネル(f1、f2、f3、 入カチャネルごとに U / レシプロカル方式+ゼロ 0.5 Hz ~ 5 kHz 同期周辺 0.5 Hz / 1 Hz / 2 J F bt / 50 ms(45 Hz 以下時は	300%以内 2% f.s. f4) l から選択 クロス間サンプリング値補 対数範囲内(測定不能時は 0 5 Hz / 10 Hz / 20 Hz 周波数に依存)	正
波形ピーク測定範囲 波形ピーク測定確度 2. 周波数測定仕様 測定チャネル数 測定ソース 測定方式 測定範囲 測定範囲 測定で駆周波数設定 データ更新レート	電圧、電流各レンジの± 電圧、電流各表示確度± 4 チャネル(f1、f2、f3、 力カチャネルごとに U / レシプロカル方式+ゼロ 0.5 Hz ~ 5 kHz 同期周別 0.5 Hz / 1 Hz / 2 Hz / 50 ms(45 Hz 以下時は ± 0.01 Hz (45 ~ 66Hz)	300%以内 2% f.s. f4) I から選択 クロス間サンプリング値補 数範囲内(測定不能時は 0 5 Hz / 10 Hz / 20 Hz 周波数に依存 20 電圧周波数測定時)	正
波形ピーク測定範囲 波形ピーク測定確度 -2. 周波数測定仕様 測定チャネル数 測定ソース 測定方式 測定節囲 測定下限周波数設定 データ更新レート	電圧、電流各レンジの±電圧、電流各表示確度± 電圧、電流各表示確度± 4 チャネル(f1、f2、f3、 入カチャネルごとに U / レシプロカル方式+ゼロ 0.5 Hz ~ 5 kHz 同期局近 0.5 Hz / 1 Hz / 2 Hz / 50 ms(45 Hz 以下時は ± 0.01 Hz (45 ~ 66Hz ± 0.05 %rdg ± 1 dgt.	300%以内 2% f.s. f4) I から選択 クロス間サンプリング値補 数較範囲内(測定不能時は 0 f 5 Hz / 10 Hz / 20 Hz 周波数に依存) 温度な変に依存り 上記条件以外)	正 .0000 Hzまたは Hz
ゼロアジャスト 波形ピーク測定範囲 波形ピーク測定確度 -2. 周波数測定仕様 測定チャネル数 測定ソース 測定方式 測定範囲 測定下限周波数設定 データ更新レート 確度	電圧、電流各レンジの± 電圧、電流各表示確度± 4チャネル(f1、f2、f3、 入カチャネルごとに U / レシプロカル方式+ゼロ 0.5 Hz ~ 5 kHz 同期周3 0.5 Hz / 1 Hz / 2 Hz / 50 ms(45 Hz 以下時は ±0.01 Hz (45 ~ 66Hz ±0.05 %rdg ±1 dgt. ジ 測定ソースの測定レンジ	300%以内 2% f.s. f4) I から選択 クロス間サンプリング値補 数範囲内(測定不能時は 0 5 Hz / 10 Hz / 20 Hz 周波数に依存 20 電圧周波数測定時)	正 .0000 Hzまたは Hz 皮において

-3. 積算測定仕様

測定モード	RMS / DC より結線ごとに選択
測定項目	電流積算(Ih+, Ih-, Ih)、有効電力積算(WP+, WP-, WP)
	lh+とlh-はDCモード時のみの測定とし、RMSモード時はlhのみ測定
測定方式	各電流、有効電力からのデジタル演算(アベレージ時はアベレージ前値で演算) DCモード時:サンプリングごとの電流値、瞬時電力値を極性別に積算
	RMSモード時:別定間隔の電流実効値、有効電力値を積算、有効電力のみ極性別
測定間隔	50 ms データ更新レート
測定範囲	積算值: 0 Ah / Wh ~ ±9999.99 TAh / TWh
	積算時間: 9999h59m 以内
積算時間確度	±50ppm±1dgt.(-10°C~40°C)
積算確度	±(電流、有効電力の確度) ±積算時間確度
バックアップ機能	積算動作中に停電した時は、停電復帰後に積算を再開する
-4. 高調波測定仕様	<u> </u>

-4. 高調波測定仕様				
測定チャネル数	4チャネル			
	周波数の異なる別系統の高			
測定項目	高調波電圧実効値、高調波 高調波電流実効値、高調波 高調波有効電力、高調波電 総合高調波電圧歪率、総合 電圧不平衡率、電流不平衡	電流含有率、高調 力含有率、高調波 高調波電流歪率	波電流位相角、	
測定方式	ゼロクロス同期演算方式(全 500 kS/s 固定サンプリング ゼロクロス間均等間引き(補	ブ、デジタルアンチ 間演算あり)	エイリアシングフィル	ルタ後
高調波同期ソース	U1 ~ U4、I1 ~ I4、Ext(モ- DC(50 ms/100 ms) いす			設定の開
FFT処理語長	32 bit			
アンチエイリアシング フィルタ	デジタルフィルタ(同期周波	数により自動設定]		
窓関数	レクタンギュラ			
同期周波数範囲	電力測定入力仕様の同期周			
データ更新レート	50 ms(同期周波数が45H			
位相ゼロアジャスト	キー / 通信コマンドによる位相 位相ゼロアジャスト値の自動 / 号 位相ゼロアジャスト設定範囲	手動設定が可能		t 時のみ)
THD演算	THD-F / THD-R			
最大解析次数とウィン ドウ波数	同期周波数範囲	ウィンドウ波数	解析次数	
1 2 // XX	0.5 Hz ≤ f < 40 Hz	1	100次	
	40 Hz ≦ f < 80 Hz	1	100次	
	80 Hz ≤ f < 160 Hz	2	80 次	
	160 Hz ≦ f < 320 Hz	4	40 次	
	320 Hz ≦ f < 640 Hz	8	20 次	
	640 Hz ≤ f < 1.2 kHz	16	10 次	
	1.2 kHz ≤ f < 2.5 kHz	32	5次	
	2.5 kHz ≦ f < 5.0 kHz	64	3 次	
確度	周波数	電圧 (U)/ 電流 (I)/ 有効電力 (P)	
	0.5 Hz ≤ f < 30 Hz	± 0.4% rdg. ± 0).2% f.s.	
	30 Hz ≦ f ≦ 400 Hz	± 0.3% rdg. ± 0.1% f.s.		
	400 Hz < f ≦ 1 kHz	± 0.4% rdg. ± 0.2% f.s.		
	1 kHz < f ≦ 5 kHz	± 1.0% rdg. ± 0.5% f.s.		
	5 kHz < f ≤ 10 kHz	± 2.0% rdg. ± 1	.0% f.s.	
	10 kHz < f ≦ 13 kHz	± 5.0% rdg. ± 1		
	ただし、同期周波数が4.3			
	LPF使用時は上記確度にLF	十の催度規定を適	用する	

-5. ノイズ測定仕様

演算チャネル数	1チャネル (CH1 ~ CH4から1チャネルを選択)
演算項目	電圧ノイズ / 電流ノイズ
演算種類	RMSスペクトラム
演算方式	500 kS/s 固定サンプリング、デジタルアンチエイリアシングフィルタ後間引き
FFT処理語長	32 bit
FFTポイント数	1000点 / 5000点 / 10000点 / 50000点(波形表示記録長に連動)
アンチエイリアシング	デジタルフィルタ自動(最大解析周波数により可変)
フィルタ	
窓関数	レクタンギュラ / ハニング / フラットトップ
データ更新レート	FFTポイント数により約400 ms / 約1 s / 約2 s / 約15 s 以内、ギャップあり
最大解析周波数	200 kHz / 50 kHz / 20 kHz / 10 kHz / 5 kHz / 2 kHz
周波数分解能	0.2 Hz ~ 500 Hz(FFTポイント数と最大解析周波数で決定する)
ノイズ値測定	電圧、電流それぞれFFTピーク値(極大値)のレベルと周波数をレベル順に
	上から10個算出
ノイズ下限周波数	0 kHz \sim 10 kHz
6 工 万柳北山岩	(DW3300 03)

-6. モータ解析仕様 (PW3390-03)

(
3チャネル CHA アナログDC入力 / 周波数入力 いずれか選択 CHB アナログDC入力 / パルス入力 いずれか選択 CHZ パルス入力
絶縁タイプBNCコネクタ
1 MΩ±100 kΩ
絶縁入力および差動入力(CHB-CHZ間は絶縁無し)
電圧、トルク、回転数、周波数、すべり、モータパワー
U1~U4、I1~I4、Ext(CH Bがパルス設定の時)、DC(50 ms/100 ms) CH A/CH B 共通
f1~f4(すべり演算用)
±20 V(アナログ時 / 周波数時 / パルス時)
50 V(50 Hz /60 Hz)

(1) . アナログ DC 入力時 (CH A / CH B)

測定レンジ	±1 V / ±5 V / ±10 V(アナログ DC 入力時)
有効入力範囲	1% ~ 110% f.s.
サンプリング	10 kHz / 16 bit
応答速度	1 ms (0 →フルスケール確度内までの応答時間、LPFがOFFの時)
測定方式	同時デジタルサンプリング・ゼロクロス同期演算方式(ゼロクロス間加算平均)
測定確度	±0.08% rdg.±0.1% f.s.
温度係数	±0.03% f.s./°C
同相電圧の影響	±0.01% f.s.以下 入力端子-PW3390ケース間に
	50 V(DC/50 Hz/60 Hz) 印加時
外部磁界の影響	±0.1% f.s.以下 (400 A/m, DCおよび50 Hz/60 Hzの磁界中において)
LPF	OFF / ON (OFF:4 kHz, ON:1 kHz)
表示範囲	レンジのゼロサプレス範囲設定~±120%
ゼロアジャスト	電圧±10%f.s. 以下の入力オフセットをゼロ補正
スケーリング	0.01 ~ 9999.99
単位	CHA: V / N·m / mN·m / kN·m
	CH B: V / Hz / r/min
(0) (1)	(011 4 = 7)

(2) . 周波数入力時 (CH A のみ)

(-, -, -, -, -, -, -, -, -, -, -, -, -, -	(=::::
有効振幅範囲	±5 Vpeak(5V 対称、RS-422 相補信号相当)
測定レンジ	100 kHz
測定帯域	1 kHz ~ 100 kHz
データ出力間隔	同期ソースによる
測定確度	±0.05% rdg.±3 dgt.
表示範囲	1.000 kHz ~ 99.999 kHz
周波数レンジ	fc ±fd [Hz] のfcとfdを設定 (周波数時のみ) 1 kHz ~ 98 kHz、1 kHz 単位 (ただし、 f c + f d < 100 kHz かつf c - f d > 1 kHz)
定格トルク	1~999
単位	Hz / N·m / mN·m / kN·m

(3) . パルス入力時 (CH B のみ)

検出レベル	Low 0.5 V以下、High 2.0 V以上
測定帯域	1 Hz~200 kHz(デューティ比 50%時)
分周設定範囲	1~60000
測定周波数範囲	0.5 Hz ~ 5.0 kHz(測定パルスを設定分周数で分周した周波数で規定)
最小検出幅	2.5 μ s以上
測定確度	±0.05% rdg.±3 dgt.
モータ極数	2~98
測定最大周波数	100 Hz / 500 Hz / 1 kHz / 5 kHz
パルス数	1 ~ 60000 の範囲でモータ極数の1/2の整数倍
単位	Hz / r/min

(4) . パルス入力時 (CH Z のみ)

検出レベル	Low 0.5 V以下、High 2.0 V以上
測定帯域	0.1 Hz ~ 200 kHz(デューティ比 50% 時)
最小検出幅	2.5 μ s以上
	OFF / Z相 / B相(Z相時は立ち上がりエッジでCH Bの分周クリアを、B
	相時は回転数の極性符号検出をおこなう)

-7. D/A 出力仕様 (PW3390-02、PW3390-03)

-7. D/A 田万丘塚 (FW3390-02)				
出力CH数	16チャネル			
出力内容	CH1~CH8: アナログ出力/波形出力 切り替え CH9~CH16: アナログ出力			
出力項目	アナログ出力:出力チャネルごとに基本測定項目から選択 波形出力:電圧または電流の測定波形を出力			
出力端子形状	D-sub25ピンコネクタ×1			
D/A 変換分解能	16 bit(極性+15 bit)			
出力確度	アナログ出力時:測定確度±0.2% f.s. (DCレベル) 波形出力時:測定確度±0.5% f.s.(±2Vf.s.時)、±1.0%f.s.(±1Vf.s.時) (実効値レベル、同期周波数範囲にて)			
出力更新レート	アナログ出力時:50 ms(選択項目のデータ更新レートによる) 波形出力時:500 kHz			
出力電圧	アナログ出力時: DC±5 V(最大約DC±12 V) 波形出力時: ±2 V/±1V 切り替え クレストファクタ 2.5 以上 全チャネル共通設定			
出力抵抗	100 Ω ±5 Ω			
温度係数	±0.05% f.s./°C			

-8. 表示部仕様

表示体	9型TFTカラー液晶ディスプレイ(800×480ドット)
表示更新レート	測定値 200 ms(内部データ更新レートから独立)
	波形・FFT 画面による

-9. 外部インターフェイス仕様

(1) . USB インターフェイス (ファンクション)

コネクタ	シリーズミニBレセプタクル×1
電気的仕様	USB2.0 (Full Speed / High Speed)
クラス	独自(USB488h)
接続先	コンピュータ (Windows10/ Windows8/ Windows7、32bit/ 64bit)
機能	データ転送、コマンド制御

(2) . USB メモリインターフェイス

コネクタ	USBタイプAコネクタ×1					
電気的仕様	USB2.0					
供給電源	大500 mA					
対応USBメモリ	USB Mass Storage Class対応					
機能	設定ファイルのセーブ/ロード、波形データのセーブ 表示中の測定値のセーブ(CSV形式) 測定値 「記録データのコピー (CFカードより) 波形データのセーブ ノイズ測定の FFT スペクトラムのセーブ 画面ハードコピーのセーブ/ロード					

(3) . LAN インターフェイス

コネクタ	RJ-45コネクタ×1					
電気的仕様	IEEE802.3準拠					
伝送方式	10BASE-T / 100BASE-TX自動認識					
プロトコル	TCP/IP					
	HTTPサーバ(リモート操作)、 専用ポート(データ転送、コマンド制御)					

(4) . CF カードインターフェイス

スロット	TYPE I×1基					
使用可能カード	コンパクトフラッシュメモリカード(32 MB以上のもの)					
対応記憶容量	最大2 GBまで					
データフォーマット	MS-DOSフォーマット (FAT16 / FAT32)					
記錄内容	設定ファイルのセーブ/ロード、波形データのセーブ 表示中の測定値 / 自動記録データのセーブ(CSV 形式) 測定値 / 記録データのコピー (USB メモリより) メイズのセーブ ノイズ波形のFFT スペクトラムのセーブ 画面ハードコピーのセーブ/ロード					
(5) RS-232C イ	ンターフェイス					

(5) . RS-232C インターフェイス

	RS-232C、「EIA RS-232D」、「CCITT V.24」、「JIS X5101」準拠 全二重、調歩同期方式、データ長:8、パリティ:なし、ストップビット:1 フロー制御:ハードフロー、デリミタ:CR+LF
コネクタ	D-sub9ピンコネクタ×1
通信速度	9600 bps/ 19200 bps/ 38400 bps
機能	コマンド制御、Bluetooth® ロガー接続(同時使用は不可)

(6).同期制御インターフェイス

,	
信号内容	時刻付き1秒クロック、積算 START/STOP, DATA RESET, イベント
端子形状	IN側:9ピン丸型コネクタ x1、OUT側:8ピン丸型コネクタ x1
信号	5 V CMOS
最大許容入力	±20 V
信号遅延	最大2 us(立ち上がりエッジで規定)

(7).外部制御インターフェイス

(·) ·) I MI I POPE I · ·	
端子形状	9ピン丸型コネクタ ×1、同期制御インターフェイスと共用
電気的仕様	ロジック信号 0 V/ 5 V (2.5 V ~ 5 V)、または接点信号(短絡/解放)
機能	積算開始、積算停止、データリセット、イベント(同期制御機能のイベント項
	目として設定したイベント)
	同期制御と同時使用は不可

機能仕様

-1. 制御機能

AUTOレンジ機能	結線ごとの電圧、電流各レンジを入力に応じて自動的にレンジ変更する 動作モード: OFF / ON (結線ごとに選択可能) AUTOレンジ範囲: 広い / 狭い(全結線共通)
時間制御機能	インターバル OFF / 50 ms / 100 ms / 200 ms / 500 ms / 1 s / 5 s / 10 s / 15 s/ 30s / 1 min / 5 min / 10 min / 15 min / 30 min / 60 min 設定により最大保存項目数に影響有り時間制御 OFF / タイマ / 実時間 タイマ時: 10 s ~ 9999 h 59 m 59 s (1 s単位) 実時間時: スタート時刻・ストップ時刻(1 min単位)
ホールド機能	全測定値、波形の表示更新を停止し現在表示中のまま固定する 積算やアベレージなどの内部演算、時計、ピークオーバー表示は更新を継続
ピークホールド機能	全測定値を測定値ごとに最大値で表示更新 波形表示と積算値は瞬時値表示更新を継続する

-2. 演算機能	2. 演算機能			
スケーリング演算	VT(PT)比、およびCT比: OFF / 0.01 ~ 9999.99			
アベレージ演算	OFF / FAST / MID / SLOW / SLOW2 / SLOW3 高調波を含む全脚時測定値の指数化平均をおこなう(ピーク値、積算値、ノ イ造を除く)表示値および保存データに適用 応答時間(入力0% fs. ~ 100% fs. に変化した時、確度内に収まる時間) FAST: 0.2s、MID: 1.0s、SLOW: 5s、SLOW2: 25s、SLOW3: 100s			
効率・損失演算	各チャネル、結線の有効電力間において、効率 n [%] および損失Loss[W] を演算する PW3390-03 ではモータパワー (Pm) も演算項目とする 演算可能数: 効率、損失それぞれ3式 (PinとPoutに演算項目を指定) 演算式: 効率 $n=100 \times P\ out $ / $ P\ in $ 損失Loss $= P\ in $ - $ P\ out $			
Δ-Y演算	3P3W3M結線時に、仮想中性点を用いて線開電圧波形を相電圧波形に変換する 電圧実効値など高調波を含むすべての電圧パラメータが相電圧で演算される U1s = (U1s-U3s)/3、U2s = (U2s-U1s)/3、U3s = (U3s-U2s)/3			
演算式選択	TYPE1 / TYPE2 (結線が3P3W3Mの時だけ有効) 3P3W3M結線時の皮相・無効電力の演算に使用する演算式を選択する 測定値S123、Q123、 φ123、 λ123のみに影響する			
電流センサー位相補 正演算	電流センサーの高周波位相特性を演算で補正する 補正ポイントを周波数と位相差で設定する結縁でとに設定) 周波数: 0.001 kHz ~ 999.999 kHz(0.001 kHz刻み) 位相差: 0.00°~±90.00°(0.01°刻み) ただし、周波数の位相差から計算される時間差が5 ns刻みで最大200 us まで			

-3. 表示機能 結線確認画面

	ベクトル	、結線確認な	が可能						
結線別表示画面	1~4チャネルの電力測定値と高調波測定値の表示 結線組み合わせされた測定ラインパターンごとに表示する 基本測定項目画面、電圧測定項目画面、電流測定項目画面、電力測定項目画 高調波パーグラフ画面、高調波リスト画面、高調波ペクトル画面								
選択表示画面		全基本測定項目から4、8、16、32の任意の測定項目を選んで表示 表示パターン:4項目、8項目、16項目、32項目(4パターン切替)							
効率・損失画面	演算式で	設定された効	率と損失を数	值表示。効率	☑ 3項目、損	失 3 項目			
波形&ノイズ画面	面に圧縮トリガ:7記録長:	・電流波形、およびノイズ測定結果を1画 イミング 10点 / 50000点 ×全電圧・電流チャネル 0, 1/50 (Peak-Peak 圧縮)							
	記録返	速度/記録長	1000点	5000点	10000点	50000点			
	500 l	(S/s	2 ms	10 ms	20 ms	100 ms			

4 ms

10 ms

20 ms 40 ms

100 ms

250 kS/s

100 kS/s

50 kS/s

10 kS/s

20 ms

50 ms

40 ms 200 ms

100 ms 500 ms

 100 ms
 200 ms
 1000 ms

 200 ms
 400 ms
 2000 ms

500 ms | 1000 ms | 5000 ms

選択された測定ラインパターンの結線図と電圧電流ベクトルを表示

トレンド画面	全基本測定項目からトレンド表示項目として選択された測定値を時系列でグラフ表示。波形はデータ更新レートのデータを時間軸設定によりPeak-Peak 圧縮して描画し、データは記憶しない 描画項目数:最大8項目 時間軸:1.5 / 3 / 6 / 12 / 30 s/div , / 1 / 3 / 6 / 10 / 30 min/div, / 1 / 3 / 6 / 12 hour/div, / 1 day/div
	1/8, 1/4, 1/2,×1,×2,×5,×10,×20,×50,×100,×200,×500)/マニュアル(表示最大値・最小値をユーザが設定)
X-Y プロット画面	基本測定項目より横軸と縦軸項目を選択しX-Yグラフ表示する データ更新レートでdot描画し、データは記憶しない 描画データリアあり 横軸:1項目(ゲージ表示あり)、縦軸:2項目(ゲージ表示あり)

-4 保友機能

-4. 体针域能	
自動保存機能	保存項目は高調波、FFT機能のソイズ値を含む全測定値から任意に選択。 選択した項目をインターバルごとにCFカードへ保存(USBメモリは不可) タイマ・実時間制御による時間制御あり 最大保存項目数: インターバル設定により可変 ・50 ms: 130項目・100 ms: 260項目・200 ms: 520項目 500 ms: 13000項目・1 s: 2600項目・5 s ~ 60 min: 5000項目 保存データ形式: CSV形式
マニュアル保存機能	保存先: USBメモリ/CFカード
	・測定データ 保存項目は高調波、FFT機能のノイズ値を含む全測定値から任意に選択 SAVEキーにて、その時の各測定値を保存 保存形式:CSV形式 ・画面ハードコピー COPVキーにて、その時の表示画面を保存 ※自動保存中でもインターバルが5 sec以上であれば動作可能 保存形式:圧糖BMP形式 ・設定データ 各種設定情報を設定ファイルとして保存/読み込み可能 保存形式:SF 形式(PW3390 専用形式) ・波形データ 波形/ノイズ画面にて、その時に表示されている波形を保存する 保存形式:CSV形式 ・FFTデータ 波形/ノイズ画面にて、その時に表示されている/イズ測定のFFT スペクトラムを保存する 保存形式:CSV形式

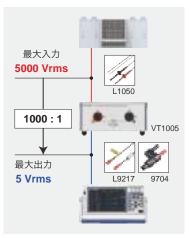
-5. 同期制御機能

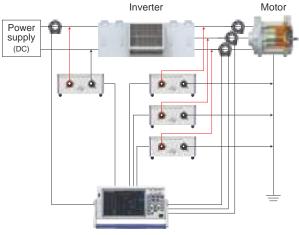
機能	PW3390(プライマリー/セカンダリー)を同期ケーブルで接続し、同期制御をおこなうインターバル設定が一致している場合は、同期して自動保存可能		
同期項目	時計、データ更新レート (FFT 演算を除く)、 積算 START/STOP、DATA RESET、イベント		
イベント項目	ホールド、マニュアル保存、画面コピー		
同期タイミング	・時計・データ更新レート セカンダリーとなるPW3390の電源ON後10秒以内 ・START/STOP、DATA RESET、イベント プライマリーとなるPW3390のキー及び通信による操作時		
同期遅延	1接続あたり最大5μs、イベントは最大+50 ms		
0.01			

-6. Bluetooth® ロガー接続機能

機能	Bluetooth® シリアル変換アダプタを使用することで、測定値をロガーに無
	線送信する
対応接続先	HIOKI LR8410 Link対応ロガー (LR8410, LR8416)
送信内容	D/A 出力のアナログ出力 CH9 ~ CH16 の出力項目に設定された測定値

-7. その他の機能

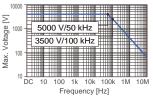

表示言語選択	日本語 / 英語 / 中国語(簡体字)					
ビープ音	OFF / ON					
画面色	COLOR1 (黒) / 2(緑青) / 3(青) / 4(グレー) / 5(紺)					
起動画面選択	結線画面 / 前回終了時画面(ただし測定画面のみ)					
LCDバックライト	ON / 1 min / 5 min / 10 min / 30 min / 60 min					
CSV保存形式	CSV / SSV					
時計機能	オートカレンダ、閏年自動判別、24時間計					
実時間確度	±3 s/日以内 (25°C)					
センサー識別	接続された電流センサーを自動的に識別(CT7000シリーズセンサーは除く)					
警告表示	入力チャネルの電圧、電流のピークオーバー検出時、同期ソース未検出時 MEAS画面のどのページにいても、全チャネルの警告マーク表示					
キーロック	ESCキーを3秒間押し続けることにより ON/OFF					
システムリセット	機器の設定を初期状態にする					
ブートキーリセット	言語設定、通信設定も含めすべての機能が工場出荷状態に初期化される					
ファイル操作	メディア内データ一覧表示、メディアのフォーマット、新規フォルダの作成、 フォルダ・ファイル消去、メディア間のファイルコピー					

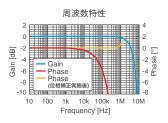

一般仕様

使用場所	屋内使用、汚染度2、高度2000 mまで					
使用温湿度範囲	囲 温度 -10℃~ 40℃、湿度 80% rh以下(結露しないこと)					
保存温湿度範囲	-10°C~ 50°C、80% rh以下(結露しないこと)					
防じん性、防水性	IP20(EN 60529)					
適合規格	安全性 EN 61010 EMC EN 61326 Class A					
電源	AC 100 V ~ 240 V、50 Hz/60 Hz、最大定格電力: 220 VA 予想される過渡過電圧: 2500 V					
バックアップ電池寿命	時計・設定条件・積算値バックアップ用(リチウム電池)、約10年(23℃参考値)					
外形寸法	340(W) × 170(H) × 156(D) mm (突起物は含まず)					
質量	4.6 kg (PW3390-03のとき)					
製品保証期間	3年間					
付属品	付属品 取扱説明書 ×1、測定ガイド ×1、電源コード ×1、USBケーブル (0.9 m) > 入力コードラベル ×2, D-sub 用コネクタ ×1 (PW3390-02, PW3390-03					

17

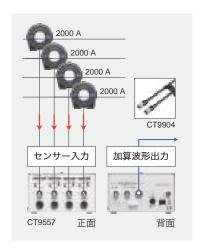
最大 5000 V の高電圧測定

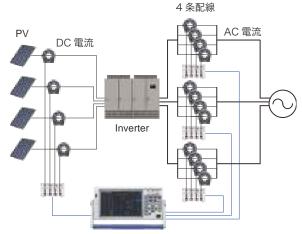



AC/DC ハイボルテージディバイダ VT1005 は、最大 5000 Vの電圧を分圧し出力します。 PW3390 で最大 5000 Vの高電圧を正確に測定できます。

AC/DC ハイボルテージディバイダ VT1005

周波数ディレーティング





VT1005 仕様

最大定格電圧	5000 Vrms, ± 7100 Vpeak (周波数ディレーティング範囲内)			
	測定カテゴリなし : AC/DC 5000 V (± 7100 V peak, 予想される過渡過電圧 0 V)			
最大定格電圧(対地間)	測定カテゴリⅡ: AC/DC 2000 V (予想される過渡過電圧 12000 V)			
	測定カテゴリ Ⅲ:AC/DC 1500 V (予想される過渡過電圧 10000 V)			
測定確度	± 0.08% (DC), ± 0.04% (50 Hz/60 Hz), ± 0.17% (50 kHz)			
周波数平坦性 ± 0.1% 振幅帯域 200 kHz Typical, ± 0.1°位相帯域 500 kHz Typical				
測定帯域	DC ~ 4 MHz(~ 1 MHz まで振幅確度 , 位相確度を規定)			
分圧比 1000:1				
同相電圧除去比(CMRR)	50 Hz/60 Hz: 90 dB (Typical), 100 kHz: 80 dB (Typical)			
使用温湿度範囲	-10°C ~ 50°C, 80% RH 以下(結露しないこと)			
電源	AC 100 V ~ 240 V (50 Hz/60 Hz)			
外形寸法 (W x H x D)	約 195.0 mm x 83.2 mm x 346.0 mm			
質量	約 2.2 kg			
測定方式	差動入力			
 付属品	電圧コード L1050-01 (1.6 m), 接続コード L9217 (絶縁 BNC, 1.6 m)			
17/周印	変換アダプタ 9704 (メス・絶縁 BNC / オス・バナナ) 雷源コード			

最大8000 A の大電流測定

センサユニット CT9557 は、 多条配線のラインで電流セン サー出力を加算し出力します。 PW3390 で最大 8000 A (4 条配線) の大電流を正確に測 定できます。

センサユニット CT9557

CT9557 仕様

P16~P18掲載の電	 電流センサー *		
DC	: ±0.06% ±0.03%		
~ 1 kHz	: ±0.06% ±0.03%		
~ 10 kHz	: ±0.10%. ±0.03%		
~ 100 kHz	: ±0.20% ±0.10%		
~ 300 kHz	: ±1.0% ±0.20%		
~ 700 kHz	: ±5.0% ±0.20%		
~ 1 MHz	: ±10.0% ±0.50%		
-10°C~50°C(結	-10°C ~ 50°C (結露しないこと)		
AC 100 V ~ 240 V (50 Hz/60 Hz)			
HIOKI ME15W (オス)			
約 116 mm × 67 mm × 132 mm			
約 420 g			
AC アダプタ Z1002, 電源コード			
	~ 1 kHz ~ 10 kHz ~ 100 kHz ~ 300 kHz ~ 700 kHz ~ 70 kHz ~ 1 MHz ~ 10° C ~ 50° C (結 AC 100 V ~ 240 V (を HIOKI ME15W (才之 約 116 mm × 67 mm 約 420 g		

配線	測定電流	使用機器
1条配線	1000 A	CT6876A CT6846A
(多条一括結線)	2000 A	CT6877A
2条配線	2000 A	CT9557+CT6876A×2/ CT9557+CT6846A×2
	4000 A	CT9557+CT6877A×2
3条配線	3000 A	CT9557+CT6876A×3/ CT9557+CT6846A×3
	6000 A	CT9557+CT6877A×3/
4 条配線	4000 A	CT9557+CT6876A×4/ CT9557+CT6846A×4
. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8000 A	CT9557+CT6877A×4

オプション 接続ケーブル CT9904 ケーブル長 1 m (PW3390 との接続に必要です。)

^{*}CT7642, CT7742, CT7044, CT7045, CT7046 を接続する場合、オプションの変換ケーブル CT9920 が必要です。

電流センサー 高確度クランプ型

		CT6831	CT6830		
外観		NEW	NEW		
定	格電流	AC/DC 20 A	AC/DC 2 A		
周	波数帯域	DC \sim 100 kHz	DC ~ 100 kHz		
測	定可能導体径	φ 5 mm 以下	φ 5 mm 以下		
	U7001 電流 (I) 組み合せ 有効電力 (P)	U7001 確度 + センサー単体確度	U7001 確度 + センサー単体確度		
	U7005 電流 (I) 組み合せ 有効電力 (P)	U7005 確度 + センサー単体確度	U7005 確度 + センサー単体確度		
Had		DC : ±0.3% ±0.10%	DC : ±0.3% ±0.10%		
確度		DC < f \leq 66 Hz : $\pm 0.3\% \pm 0.01\%$	DC < f ≤ 66 Hz : ±0.3% ±0.05%		
	センサー単体 (振幅) ** 1	66 Hz < f ≤ 500 Hz : ±0.3% ±0.02%	66 Hz < f ≤ 500 Hz : ±0.3% ±0.05%		
	±(% of reading +% of full scale)	500 Hz < f ≤ 1 kHz : ±0.5% ±0.05%	500 Hz < f ≤ 1 kHz : ±0.5% ±0.05%		
	full scale は電流センサー定格	1 kHz < f≤ 5 kHz : ±1.0% ±0.10%	1 kHz < f≤ 5 kHz : ±1.0% ±0.10%		
		5 kHz < f≤ 10 kHz : ±5.0% ±0.10%	5 kHz < f≤ 10 kHz : ±5.0% ±0.10%		
		10 kHz < f≤ 100 kHz : ±30% ±0.10%	10 kHz < f≤ 100 kHz : ±30% ±0.10%		
同	相電圧除去比 CMRR	140 dB 以上(DC ~ 100 Hz), 130 dB 以上(100 Hz ~ 1 kHz) (出力電圧への影響 / 同相電圧)	140 dB 以上(DC ~ 100 Hz), 130 dB 以上(100 Hz ~ 1 kHz) (出力電圧への影響 / 同相電圧)		
周波数ディレーティング		T₂: 周囲温度 30 A (-40°C≤T≤+50°C) 20 A (-40°C≤T≤+50°C) 10 20 A (-40°C≤T≤+50°C) 11 10 100 1k 10k 100k DC Frequency [ktz]	TA:周囲温度 3 A (-40°C≤7a≤+80°C) 1 2 A (-40°C≤7a≤+80°C) 1 2 A (-40°C≤7a≤+80°C) 1 1 10 100 1k 10k 100k Frequency [Hz]		
出	力電圧	0.1 V/A (=2 V/20 A)	1 V/A		
使用温湿度範囲 **2		センサー部:-40° C ~ 85° C, 80% RH 以下 中継ボックス:-25° C ~ 50° C, 80% RH 以下	センサー部: -40° C ~ 85° C, 80% RH 以下 中継ボックス: -25° C ~ 50° C, 80% RH 以下		
保存温湿度範囲 **2		センサー部 + 中継ボックス:-25°C ~ 50°C, 80% RH 以下	センサー部 + 中継ボックス:-25° C ~ 50° C, 80% RH 以下		
適	合規格	安全性: EN 61010, EMC: EN 61326	安全性: EN 61010, EMC: EN 61326		
ケ	ーブル長	約4m(センサー - 中継ボックス間), 約0.2m(中継ボックス - 出力コネクター間)	約4m(センサー - 中継ボックス間),約0.2m(中継ボックス - 出力コネクター間)		
外	形寸法	センサー部:約 76.5W × 23.4H × 14.2D mm 中継ボックス:約 80W × 20H × 26.5D mm (突起部 , ケーブル含まず)	センサー部:約 76.5W × 23.4H × 14.2D mm 中継ボックス:約 80W × 20H × 26.5D mm (突起部 , ケーブル含まず)		
質	量	約 160 g	約 160 g		

^{**1 ± (%} of reading + % of full scale) , full scale は電流センサ定格

^{**2} 結露しないこと

 $^{^{**3}}$ ±(% of reading +% of range), rangeはPW3390のレンジ

CT6846A: 20 Aレンジまたは 40 Aレンジのときには \pm 0.15% of range を加算、CT6845A: 10 Aレンジまたは 20 Aレンジのときには \pm 0.15% of range を加算 CT6844A: 10 Aレンジまたは 20 Aレンジのときには \pm 0.15% of range を加算

19

外観		CT6843A		CT6841A		9272-05	
周波数帯域		DC ~	· 700 kHz	DC ~	~ 2 MHz	1 Hz	~ 100 kHz
測定可能導体径		φ 20 mm 以下		φ 20	mm 以下	φ 4	6 mm 以下
PW3390 組み合せ**4	電流 (I) 有効電力 (P)	DC 45 Hz ≤ f ≤ 66 Hz DC 45 Hz ≤ f ≤ 66 Hz	: ±0.25% ±0.09% : ±0.24% ±0.07% : ±0.25% ±0.09% : ±0.24% ±0.07%	DC 45 Hz ≤ f ≤ 66 Hz DC 45 Hz ≤ f ≤ 66 Hz	: ±0.25% ±0.12% : ±0.24% ±0.07% : ±0.25% ±0.12% : ±0.24% ±0.07%	PW3390 確度 + センサー単体確度	
	センサー単体 (振幅) ±(% of reading +% of full scale) full scale は電流センサー定格	DC	: ±0.2% ±0.02%	DC	: ±0.2% ±0.05%		_
±(% of reading		6 of reading +% of full scale) 5 kHz < f ≤ 10 kHz scale は電流センサー定格 10 kHz < f ≤ 50 kHz		: ±0.2% ±0.01% : ±0.3% ±0.02% : ±0.5% ±0.02% : ±1.0% ±0.02% : ±1.5% ±0.02% : ±5.0% ±0.02%	DC < f ≤ 100 Hz 100 Hz < f ≤ 500 Hz 500 Hz < f ≤ 1 kHz 1 kHz < f ≤ 5 kHz 5 kHz < f ≤ 10 kHz 10 kHz < f ≤ 50 kHz	: ±0.2% ±0.01% : ±0.3% ±0.02% : ±0.5% ±0.02% : ±1.0% ±0.02% : ±1.5% ±0.02% : ±2.0% ±0.02%	1 Hz ≤ f < 5 Hz 5 Hz ≤ f < 10 Hz 10 Hz ≤ f < 45 Hz 45 Hz < f ≤ 66 Hz 66 Hz < f ≤ 1 kHz 1 kHz < f ≤ 5 kHz
使用温度範囲		50 kHz < f ≤ 100 kHz 100 kHz < f ≤ 300 kHz 300 kHz < f ≤ 500 kHz	: ±10% ±0.05% : ±15% ±0.05% : ±30% ±0.05%	50 kHz < f ≤ 100 kHz 100 kHz < f ≤ 300 kHz 300 kHz < f ≤ 500 kHz 500 kHz < f < 1 MHz	: ±5.0% ±0.05% : ±10% ±0.05% : ±15% ±0.05% : ±30% ±0.05%	5 kHz < f ≤ 10 kHz 10 kHz < f ≤ 50 kHz 50 kHz < f ≤ 100 kHz	: ±2.5% ±0.10% : ±5.0% ±0.10% : ±30.0% ±0.10%
			C~ 85°C	-40°C~ 85°C CAT III 1000 V		0°C~ 50°C	
対地間最大電圧 寸法		CAT III 1000 V 153W×67H×25D mm、 ケーブル長 3 m		153W×67H×25D mm、 ケーブル長3 m		CAT III AC600 V rms 78W × 188H × 35D mm ケーブル長3 m	
質量		約	380 g	約 370 g		約 450 g	
ディレーティング特性		7 特性 200 400 A 7 400		45		400	

^{| **4 ±(%} of reading +% of range), rangeはPW3390のレンジ | CT6843A: 4 A レンジまたは 8 A レンジのときには ± 0.15% of range を加算 | CT6841A: 0.4 A レンジまたは 0.8 A レンジのときには ± 0.15% of range を加算

受注生産品にてケーブル長変更も承っております。詳しくはお問い合わせください。

電流センサー 高確度貫通型

	CT6877A, CT6877A-1 **6		CT6876A, CT6876A-1 *6		CT6904A-2, CT6904A-3 **6			
外観						広帯域 4MHz CT6904A-2 CT6904A-3 受注生産品		
定格電流			AC/D	C 2000 A	AC/DC 1000 A		AC/DC 800 A	
周波数帯域	域		DC ~ 1 MHz		CT6876A: DC ~ 1.5 MHz CT6876A-1: DC ~ 1.2 MHz		CT6904A-2: DC ~ 4 MHz CT6904A-3: DC ~ 2 MHz	
測定可能導	尊体径		φ 80) mm 以下	φ 36	6 mm 以下	φ 32	mm 以下
PW33	300	電流 (I)	DC 45 Hz ≤ f ≤ 66 Hz	: ±0.09% ±0.078% : ±0.08% ±0.058%	DC 45 Hz ≤ f ≤ 66 Hz	: ±0.09% ±0.078% : ±0.08% ±0.058%	-	
組み合		有効電力 (P)	DC 45 Hz ≤ f ≤ 66 Hz	: ±0.09% ±0.078% : ±0.08% ±0.058%	DC 45 Hz ≤ f ≤ 66 Hz	: ±0.09% ±0.078% : ±0.08% ±0.058%	- PW3390 確度	+ センサー単体確度
			DC	: ±0.04% ±0.008%	DC	: ±0.04% ±0.008%	DC	: ±0.030% ±0.009%
			DC < f < 16 Hz	: ±0.1% ±0.02%	DC < f < 16 Hz	: ±0.1% ±0.02%	DC < f < 16 Hz	: ±0.2% ±0.025%
			16 Hz ≤ f < 45 Hz	: ±0.05% ±0.01%	16 Hz ≤ f < 45 Hz	: ±0.05% ±0.01%	16 Hz ≤ f < 45 Hz	: ±0.1% ±0.025%
11.4			45 Hz ≤ f ≤ 66 Hz	: ±0.04% ±0.008%	45 Hz ≤ f ≤ 66 Hz	: ±0.04% ±0.008%	45 Hz ≤ f ≤ 65 Hz	: ±0.025% ±0.009%
題			66 Hz < f ≤ 100 Hz	: ±0.05% ±0.01%	66 Hz < f ≤ 100 Hz	: ±0.05% ±0.01%	65 Hz < f ≤ 850 Hz	: ±0.05% ±0.009%
	ナー単体(対		100 Hz < f ≤ 500 Hz	: ±0.1% ±0.02%	100 Hz < f ≤ 500 Hz	: ±0.1% ±0.02%	850 Hz < f ≤ 1 kHz	: ±0.1% ±0.013%
	-	% of full scale)	500 Hz < f ≤ 1 kHz	: ±0.2% ±0.02%	500 Hz < f ≤ 1 kHz	: ±0.2% ±0.02%	1 kHz < f ≤ 5 kHz	: ±0.4% ±0.025%
full sca	cale は電流	センサー定格	1 kHz < f ≤ 10 kHz	: ±0.5% ±0.02%	1 kHz < f ≤ 5 kHz	: ±0.5% ±0.02%	5 kHz < f ≤ 10 kHz	: ±0.4% ±0.025%
			10 kHz < f ≤ 50 kHz	: ±1.5% ±0.05%	5 kHz < f ≤ 10 kHz	: ±0.5% ±0.02%	10 kHz < f ≤ 50 kHz	: ±1.0% ±0.025%
			50 kHz < f ≤ 100 kHz	: ±2.5% ±0.05%	10 kHz < f ≤ 50 kHz	: ±2.0% ±0.05%	50 kHz < f ≤ 100 kHz	: ±1.0% ±0.063%
			100 kHz < f ≤ 700 kHz	: ±(0.025×f kHz)% ±0.05%	50 kHz < f ≤ 100 kHz	: ±3.0% ±0.05%	100 kHz < f ≤ 300 kHz	: ±2.0% ±0.063%
				_	100 kHz < f ≤ 1 MHz	: ±(0.03×f kHz)% ±0.05%	300 kHz < f ≤ 1 MHz	: ±5.0% ±0.063%
使用温度範	範囲		-40°	C~ 85°C	-40°C∼ 85°C		-10°C∼ 50°C	
対地間最大	大電圧		CAT III 1000 V		CAT III 1000 V		CAT I	II 1000 V
寸法 229W×232H× ケーブル長 (CT6877A:3 m.			160W×112H×50D mm、 ケーブル長(CT6876A:3 m, CT6876A-1:10 m)		139W×120H×52D mm、 ケーブル長(CT6904A-2:3 m, CT6904A-3:10 m)			
質量			約 5 kg,	約 5.3 kg ^{※6}	約 970 g, 約 1300 g ** 6		約 1.15 kg, 約 1.45 kg ^{※ 6}	
ディレーティング特性		W 10 0 1 10 10 10 1k 10k 10k 1 M		2k		10 10 10 10 10 10 10 10		

 $^{^{**5}}$ ± (% of reading +% of range), rangeはPW3390のレンジ

CT6877A- CT6877A- 1: 40 Aレンジまたは80 Aレンジのときには±0.15% of range を加算、CT6876A-1: 20 Aレンジまたは40 Aレンジのときには±0.15% of range を加算 CT6877A-1・CT6876A-1・CT6904A-3 はコード長10 m 仕様製品です。この場合、CT6877A-1 は1 kHz< f≦700 kHz の周波数において、振幅確度:±(0.005 x f kHz)% of reading、位相確度:±(0.015 x f kHz)* 加算、CT6876A-1 は1 kHz< f≦1MHzの周波数において、振幅確度:±(0.005 x f kHz)% of reading、位相確度:±(0.015 x f kHz)* 加算

CT6904A-3 は50 kHz< f ≤ 1 MHz の周波数において、振幅確度:± (0.015 × f kHz)% of reading を 加算

^{**7 ± (%} of reading +% of range), rangeはPW3390のレンジ

CT6875A・CT6875A-1:10 Aレンジまたは20 Aレンジのときには±0.15% of range を加算、CT6873・CT6873・CT6873・O1:4 Aレンジまたは8 Aレンジのときには±0.15% of range を加算 CT6904A-1・CT6875A-1・CT6873-01 はコード長10 m仕様製品です。この場合、CT6904A-1は50 kHz< f≤1 MHzの周波数において、振幅確度:±(0.015×f kHz)% of reading 加算 CT6875A-1 は 1 kHz< $f \le 1$ MHz の周波数において、振幅確度: \pm (0.005 × f kHz) $^{\circ}$ of reading, 位相確度: \pm (0.015 × f kHz) $^{\circ}$ 加算 CT6873-01 は 1 kHz< $f \le 1$ MHz の周波数において、位相確度: \pm (0.015 × f kHz) $^{\circ}$ 加算

21

		CT6863-05		CT6872, CT6872-01*10		CT6862-05	
外観				広帯域 10 MHz			
定格電流		AC/DC 200 A		AC/DC 50 A		AC/DC 50 A	
周波数帯域		DC ∼ 500 kHz		DC ~ 10 MHz		DC ~ 1 MHz	
測定す	可能導体径	φ 24 mm 以下		φ 24 mm 以下		ø 24 mm 以下	
	PW3390 組み合せ* ⁹ 有効電力 (P)	PW3390 確度	+ センサー単体確度	DC $45 \text{ Hz} \le f \le 66 \text{ Hz}$ DC $45 \text{ Hz} \le f \le 66 \text{ Hz}$: ±0.08% ±0.072% : ±0.07% ±0.057% : ±0.08% ±0.072% : ±0.07% ±0.057%	PW3390 確度 + センサー単体確度	
		DC	: ±0.05% ±0.01%	DC	: ±0.03% ±0.002%	DC	: ±0.05% ±0.01%
		DC < f ≤ 16 Hz	: ±0.10% ±0.02%	DC < f ≤ 16 Hz	: ±0.1% ±0.01%	DC < f ≤ 16 Hz	: ±0.10% ±0.02%
	センサー単体(振幅)	16 Hz ≤ f < 400 Hz	: ±0.05% ±0.01%	16 Hz < f ≤ 45 Hz	: ±0.05% ±0.01%	16 Hz ≤ f < 400 Hz	: ±0.05% ±0.01%
羅薩		400 Hz ≤ f ≤ 1 kHz	: ±0.2% ±0.02%	45 Hz < f ≤ 66 Hz	: ±0.03% ±0.007%	400 Hz ≤ f ≤ 1 kHz	: ±0.2% ±0.02%
年		1 kHz < f ≤ 5 kHz	: ±0.7% ±0.02%	66 Hz < f ≤ 100 Hz	: ±0.04% ±0.01%	1 kHz < f ≤ 5 kHz	: ±0.7% ±0.02%
	±(% of reading +% of full scale)	5 kHz < f ≤ 10 kHz	: ±1.0% ±0.02%	100 Hz < f ≤ 500 Hz	: ±0.06% ±0.01%	5 kHz < f ≤ 10 kHz	: ±1.0% ±0.02%
	full scale は電流センサー定格	10 kHz < f ≤ 50 kHz	: ±2.0% ±0.02%	500 Hz < f ≤ 1 kHz	: ±0.1% ±0.01%	10 kHz < f ≤ 50 kHz	: ±1.0% ±0.02%
		50 kHz < f ≤ 100 kHz	: ±5.0% ±0.05%	1 kHz < f ≤ 5 kHz	: ±0.15% ±0.02%	50 kHz < f ≤ 100 kHz	: ±2.0% ±0.05%
		100 kHz < f ≤ 300 kHz	: ±10% ±0.05%	5 kHz < f ≤ 10 kHz	: ±0.15% ±0.02%	100 kHz < f ≤ 300 kHz	: ±5.0% ±0.05%
		300 kHz < f ≤ 500 kHz	: ±30% ±0.05%	10 kHz < f ≤ 1 MHz	: ±(0.012×f kHz)% ±0.05%	300 kHz < f ≤ 700 kHz	: ±10% ±0.05%
			_		_	700 kHz < f < 1 MHz	: ±30% ±0.05%
使用	温度範囲	-30°C∼ 85°C		-40°C∼ 85°C		-30°	C~ 85°C
対地	間最大電圧	CAT I	II 1000 V	CAT III 1000 V		CAT	II 1000 V
寸法			DH×53D mm、 ブル長3 m	70W×100H×53D mm、 ケーブル長(CT6872:3 m, CT6872-01:10 m)			DH × 53D mm、 ブル長 3 m
質量		約 350 g		約 370 g, 約 690 g ** 10		約	340 g
ディレーティング特性			00 1k 10k 100k 1M	120			100 1k 10k 100k 1h

受注生産品にてケーブル長変更も承っております。詳しくはお問い合わせください。

汎用センサー

* 出力コネクタ HIOKI PL14 のセンサーと PW3390 との接続には CT9920 (オプション) が必要です。

	AC/DC カレントセンサ CT7642 AC/DC オートゼロカレントセンサ CT7742	AC フレキシブルカレントセンサ CT7044, CT7045, CT7046	
外観	3/3/		
定格電流	AC / DC 2000 A	AC 6000 A	
周波数帯域	CT7642: DC ~ 10 kHz CT7742: DC ~ 5 kHz	10 Hz ∼ 50 kHz (±3 dB)	
測定可能導体径	φ 55 mm 以下	CT7044: ø 100 mm 以下 CT7045: ø 180 mm 以下 CT7046: ø 254 mm 以下	
基本確度	DC, 45Hz ~ 66 Hz において 振幅: ± 1.5% rdg, ± 0.5% f.s. ~ 66 Hz において 位相: ± 2.3 °	$45\sim66$ Hz、フレキシブルループ中 心部において 振幅: $\pm1.5\%$ rdg. $\pm0.25\%$ f.s. 位相: ±1.0 $^{\circ}$	
周波数特性 (振幅)	66 Hz ~ 1 kHz ± 2.5% rdg. ± 1.0% f.s.	-	
使用温度範囲	-25°C∼ 65°C	-25°C~ 65°C	
導体位置の影響	± 1.0%rdg. 以下	± 3.0% 以下	
外部磁界の影響	400 A/m磁界(DC)において 0.2% f.s. 以下	400 A/m 磁界(50Hz/60Hz) において CT7044, CT7045: 2.0% f.s. 以下 CT7046: 2.5% f.s. 以下	
出力コネクタ	HIOKI PL14 *	HIOKI PL14 *	
寸法	64W×195H×34D mm ケーブル長 2.5 m	回路ボックス:25W×72H×20D mm ケーブル長 2.5 m	
質量	510 g	CT7044 : 160 g CT7045 : 174 g CT7046 : 186 g	
ディレーティング 特性	2.5k (2.5k (3.2k (4.7k) (4.7k) (4.7k) (5.0k) (6.7k) (6.7k) (7.7k) (7.7k) (8.7k) (8.7k) (8.7k) (9.7k) (1.5k) (12k 10k 10k 10k 10k 10k 10k 10k 10k 10k 10	

高確度センサー 直接結線タイプ

DCCT 方式により、50A 定格で世界最高クラスの測定帯域と測定確度を実現。 (5A 定格バージョンも用意しています。詳しくはお問い合わせください。)

	AC/DC カレントボックス PW9100A-3	AC/DC カレントボックス PW9100A-4	
外観	- And and and	this the the to	
入力チャネル数	3チャネル	4チャネル	
定格電流	AC/DC 50 A		
周波数帯域	DC ~ 3.5 MHz (-3dB)		
カレントボックス単体 (基本確度)	振幅:± 0.02% rdg. ± 0.005% f.s. 位相:± 0.1 * (45 Hz ~ 65 Hz において) 振幅:± 0.02% rdg. ± 0.007% f.s. (DC において)		
対地間最大定格電圧	CAT II 1000 V, CAT III 600 V		

PW3390 との組み合せ確度 ± (% of reading +% of range), range は PW3390 のレンジ

	電流 (I)	有効電力 (P)
DC	± 0.07% ± 0.077%	± 0.07% ± 0.077%
45 Hz ≦ f ≦ 66 Hz	± 0.06% ± 0.055%	± 0.06% ± 0.055%

¹ Aレンジまたは 2 Aレンジのときには ± 0.12% of range を加算

PW9100A の製品ページを ご覧いただけます。

^{®9}±(% of reading +% of range), rangeはPW3390のレンジ CT6872・CT6872-01:1 Aレンジまたは2 Aレンジのときには±0.15% of rangeを加算 ^{®10} CT6872-01 はコード長 10 m 仕様製品です。この場合、CT6872-01 は1 kHz< f ≤ 1 MHz の周波数において、位相確度:±(0.015×fkHz)* 加算

製品名:パワーアナライザ PW3390

形名(発注コード)	D/A 出力	モータ解析
PW3390-01	_	_
PW3390-02	0	_
PW3390-03	0	0

| 付属品:取扱説明書×1、測定ガイド×1、電源コード×1、USBケーブル×1、入力コードラベル×2、 D-sub25 ピン用コネクタ×1 (PW3390-02、PW3390-03)

測定にはオプションの電圧コード、電流センサーが必要です。モータ解析および D/A 出力は、後からの追加はできませんのでご注意ください。

電流測定オプション (高確度 クランプ型)

形名(発注コード)	製品名	定格電流	周波数特性	チャネル数・ケーブル長
CT6831	AC/DC カレントプローブ	20 A rms	DC ~ 100 kHz	4.2 m
CT6830	AC/DC カレントプローブ	2 A rms	DC ~ 100 kHz	4.2 m
CT6846A	AC/DC カレントプローブ	1000 A rms	DC ~ 100 kHz	3 m
CT6845A	AC/DC カレントプローブ	500 A rms	DC ~ 200 kHz	3 m
CT6844A	AC/DC カレントプローブ	500 A rms	DC ~ 500 kHz	3 m
CT6843A	AC/DC カレントプローブ	200 A rms	DC ~ 700 kHz	3 m
CT6841A	AC/DC カレントプローブ	20 A rms	DC ~ 2 MHz	3 m
9272-05	クランプオンセンサ	AC 20 A/200 A rms	1 Hz ~ 100 kHz	3 m

電流測定オプション (高確度 貫通型,直接結線型)

形名(発注コード)	製品名	定格電流	周波数特性	チャネル数・ケーブル長
CT6877A	AC/DC カレントセンサ	2000 A rms	DC ~ 1 MHz	3 m
CT6877A-1	AC/DC カレントセンサ	2000 A rms	DC ~ 1 MHz	10 m
CT6876A	AC/DC カレントセンサ	1000 A rms	DC ~ 1.5 MHz	3 m
CT6876A-1	AC/DC カレントセンサ	1000 A rms	DC ~ 1.2 MHz	10 m
CT6904A-2*	AC/DC カレントセンサ	800 A rms	DC ~ 4 MHz	3 m
CT6904A-3*	AC/DC カレントセンサ	800 A rms	DC ~ 2 MHz	10 m
CT6904A	AC/DC カレントセンサ	500 A rms	DC ~ 4 MHz	3 m
CT6904A-1*	AC/DC カレントセンサ	500 A rms	DC ~ 2 MHz	10 m
CT6875A	AC/DC カレントセンサ	500 A rms	DC ~ 2 MHz	3 m
CT6875A-1	AC/DC カレントセンサ	500 A rms	DC ~ 1.5 MHz	10 m
CT6873	AC/DC カレントセンサ	200 A rms	DC ~ 10 MHz	3 m
CT6873-01	AC/DC カレントセンサ	200 A rms	DC ~ 10 MHz	10 m
CT6863-05	AC/DC カレントセンサ	200 A rms	DC ~ 500 kHz	3 m
CT6872	AC/DC カレントセンサ	50 A rms	DC ~ 10 MHz	3 m
CT6872-01	AC/DC カレントセンサ	50 A rms	DC ~ 10 MHz	10 m
CT6862-05	AC/DC カレントセンサ	50 A rms	DC ~ 1 MHz	3 m
PW9100A-3	AC/DC カレントボックス	50 A rms	DC ~ 3.5 MHz	3 チャネル
PW9100A-4	AC/DC カレントボックス	50 A rms	DC ~ 3.5 MHz	4 チャネル

* 受注生産品

電流測定オプション (汎用センサー)

形名(発注コード)	製品名	定格電流	周波数特性	チャネル数・ケーブル長
CT7742**	AC/DC オートゼロカレントセンサ	2000 A rms	DC ~ 5 kHz	2.5 m
CT7642**	AC/DC カレントセンサ	2000 A rms	DC ~ 10 kHz	2.5 m
CT7044**	AC フレキシブルカレントセンサ	6000 A rms	10 Hz ~ 50 kHz	2.5 m
CT7045**	AC フレキシブルカレントセンサ	6000 A rms	10 Hz ~ 50 kHz	2.5 m
CT7046**	AC フレキシブルカレントセンサ	6000 A rms	10 Hz ~ 50 kHz	2.5 m

** PW3390 との接続には変換ケーブル CT9920 が必要です。

変換ケーブル CT9920

変換ケーブル CT9900

接続ケーブル CT9904 出力コネクタが HIOKI PL23 の電流センサー

出力コネクタがHIOKI PL14の電流センサー を PW3390 に接続する場合に必要です 【対象製品】

CT7742、CT7642、CT7044、 CT7045、CT7046

を PW3390 に接続する場合に必要です 【対象製品】

CT6841, CT6843, CT6844, CT6845, CT6846, CT6862, CT6863, 9272-10

ケーブル長 1 m、CT9557 の加算波形出力 端子を PW3390 に接続する場合に必要です

23

電圧測定オプション

電圧コード L9438-50

バナナ-バナナ(赤/黒×各1)、ワニロクリップ付き コード長 3 m

CATIV 600 V, CAT III 1000 V

電圧コード L1000

バナナ-バナナ(赤/黄/青/灰×各1、黒×4)、 ワニロクリップ付き、コード長 3 m

CATIV 600 V, CAT III 1000 V

延長ケーブル L4931

バナナ-バナナ(赤/黒×各1)、L9438-50または L1000延長用、コード長1.5 m、連結コネクタ付 CATIV 600 V, CAT III 1000 V

結線アダプタ PW9000

三相3線(3P3W3M)結線時、結線する電圧コード を6本から3本に減らすことができます CAT IV 600 V, CAT III 1000 V

AC/DC ハイボルテージディバイダー VT1005

最大5000 Vの電圧を分圧して出力します

コンセント入力コード 9448

国内AC100 Vコンセントに 簡単に接続して電圧測定可能、コード長 2 m 日本国内のみ

グラバークリップ L9243

グラバークリップ(赤/黒×各1) 電圧コードの先端を付け替えて使用 CAT II 1000 V

分岐コード L1021-01

バナナ分岐-バナナ(赤 × 各1) 電圧入力分岐用、コード長0.5 m CATIV 600 V, CAT III 1000 V

分岐コード L1021-02

バナナ分岐-バナナ(黒 × 各1) 電圧入力分岐用、コード長0.5 m CATIV 600 V, CAT III 1000 V

結線アダプタ PW9001

三相4線(3P4W)結線時、結線する電圧コードを 6本から4本に減らすことができます CATIV 600 V, CAT III 1000 V

電圧コード L1050-01, L1050-03

VT1005用

1.6 m (L1050-01), 3.0 m (L1050-03)

接続コード L9217, L9217-01, L9217-02

絶縁 BNC、モータ入力用、VT1005接続用 1.6 m (L9217), 3.0 m (L9217-01), 10 m (L9217-02)

接続ケーブル 9683

同期測定用. ケーブル長1.5 m

変換アダプタ 9704

VT1005接続用 絶縁 BNC-バナナ

LAN ケーブル 9642

CAT5e、クロス変換コネクタ付 ケーブル長 5 m

RS-232C ケーブル 9637

9pin-9pin クロス ケーブル長 1.8 m

その他オプション

PC カード 512MB 9728 PC カード 1GB 9729 PC カード 2GB 9830

弊社オプションのPCカードを必ず使用してください。 弊社オプション以外のPCカードを使用すると、正常に保存、読み出しができない場合があり、 動作保証はできません。

携帯用ケース 9794

PW3390、3390専用ハードケース 448W×618H×295D mm

その他

受注生産品もございます。詳しくは弊社営業所までお問い合わせください。

- ・D/A 出力ケーブル D-sub25 ピンー BNC (オス)
- ・ラックマウント金具 (EIA 用、JIS 用)
- ・PW9100A 5A 定格バージョン

ラックマウント金具

EIA用とJIS用あり

D/A 出力ケーブル

D-sub25ピン-BNC(オス) 16 チャネル変換、コード長 2.5 m

お問い合わせは ...

本 社 〒386-1192 長野県上田市小泉81 製品に関するお問い合わせはこちら

本社 カスタマーサポート

0120-72-0560

(9:00~12:00, 13:00~17:00, 土·日·祝日を除く)

☎ 0268-28-0560 ☑ info@hioki.co.jp

詳しい情報はWEBで検索 | HIOKI Q